Results 1 to 5 of 5

Math Help - Linear problems

  1. #1
    Newbie
    Joined
    Mar 2006
    Posts
    17

    Question Linear problems

    Please help me solve these, thank you so much!

    1.
    Solve for (x,y,z)
    2x + 5y + 3z = 16
    x/5 + y/2 + z/3 = 2
    3x - 2y - 4z = -2

    State clearly whether this system is consistent or inconsistent. State whether the solution is unique, or if there are an infinite number of solutions, or no solution at all. If the solution is unique, state the solution.

    2.
    The equations of three planes are:
    3x + 2y + 7z = 25 (1)
    2x + y + 4z = 14 (2)
    5x + 3y + 11z = 39 (3)

    Solve the above system of equations. State whether this system is consistent or inconsistent and how many solutions there are.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Global Moderator

    Joined
    Nov 2005
    From
    New York City
    Posts
    10,616
    Thanks
    10
    Quote Originally Posted by LilDragonfly
    Please help me solve these, thank you so much!

    1.
    Solve for (x,y,z)
    2x + 5y + 3z = 16
    x/5 + y/2 + z/3 = 2
    3x - 2y - 4z = -2

    State clearly whether this system is consistent or inconsistent. State whether the solution is unique, or if there are an infinite number of solutions, or no solution at all. If the solution is unique, state the solution.
    I do not know how you solve this, but I look at the determinant. Which is approximately, .633 since it is non-zero the solution is unique.
    It solution is,
    Using my matrix calculator I get,
    (x,y,z)=(10,-8,12)
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie
    Joined
    Mar 2006
    Posts
    17
    Thank you ThePerfectHacker for that, but is there anyone else that has a greater understanding on this topic to provide a fuller explanation on how to answer these two questions?
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Global Moderator

    Joined
    Nov 2005
    From
    New York City
    Posts
    10,616
    Thanks
    10
    Quote Originally Posted by LilDragonfly
    Thank you ThePerfectHacker for that, but is there anyone else that has a greater understanding on this topic to provide a fuller explanation on how to answer these two questions?
    Should have not I explained it with determinants?

    Maybe you wanted me to find the inverse of the augmented matrix?
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Newbie
    Joined
    Mar 2006
    Posts
    17
    I don't think I really explained the question properly, so I have found a few statements on the solutions involved: unique, inconsistent..etc. To be quite honest, I have no idea what it all means but I hope it is some help for you. I would love to understand how you answer question one and two, so if you can explain it in lay-mans terms then I will be a very happy and rather informed girl

    - When there is a solution or many solutions to a system of simultaneous equations they are said to be consistent equations. When there is no solution the equations are said to be inconsistent.

    When solving simultaneous equations with two unknowns:
    - one solutions means the lines intersect
    - a true statement (eg 0 = 0) means there is an infinite number of solutions, which means the lines are coincident.
    - a false statement means there are no solutions, this means the lines are parallel.

    When solving simultaneous equations with three unknowns:
    - a false statement from any pair of the three equations means there are no solutions, there are various possibilities for the relative positions of the planes.
    - no false statements and no unique solution means there are an infinite number of solutions here 3 planes intersect on a line or 2 planes are coincident with one intersecting them or 3 coincident planes.

    If k = n and the matrix A is non-singular, then the system has a unique solution in the n variables. In particular, there is a unique solution if A has a matrix inverse A^-1. In this case, x = A^-1 b. (http://mathworld.wolfram.com/LinearS...Equations.html)

    Thank you!
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Need help with linear math problems.
    Posted in the Pre-Calculus Forum
    Replies: 0
    Last Post: December 8th 2009, 08:46 PM
  2. Linear word problems
    Posted in the Algebra Forum
    Replies: 4
    Last Post: January 23rd 2009, 07:39 PM
  3. linear lines and problems
    Posted in the Algebra Forum
    Replies: 4
    Last Post: July 12th 2008, 02:04 AM
  4. Linear Transformation Problems
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: February 3rd 2008, 08:04 PM
  5. Mostly linear problems i had trouble with
    Posted in the Math Topics Forum
    Replies: 5
    Last Post: December 29th 2007, 04:12 PM

Search Tags


/mathhelpforum @mathhelpforum