Results 1 to 6 of 6

Math Help - Subgrops

  1. #1
    Amy
    Amy is offline
    Junior Member
    Joined
    Feb 2007
    Posts
    59

    Arrow Subgrops

    How can we find all the subgroups of a group
    I am attaching a file . Taking that an example can you please explain?
    Thanks in advance..
    Attached Thumbnails Attached Thumbnails Subgrops-group.jpg  
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor kalagota's Avatar
    Joined
    Oct 2007
    From
    Taguig City, Philippines
    Posts
    1,026
    Quote Originally Posted by Amy View Post
    How can we find all the subgroups of a group
    I am attaching a file . Taking that an example can you please explain?
    Thanks in advance..
    right now, what do you know about subgroups?
    do you already have an idea that the cardinality of a subgroup must divide the cardinality of the group?
    Last edited by kalagota; December 15th 2007 at 12:32 AM.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    MHF Contributor kalagota's Avatar
    Joined
    Oct 2007
    From
    Taguig City, Philippines
    Posts
    1,026
    as i see it from your example, the set is

    S= \{ 2, 4, 6, 8\}

    and defines * by multiplication of elements modulo 10..

    am i right?

    from that, which do you think takes the role of the identity? it is one of the subgroups..
    also, if you want to have another subgroup, this must contain the identity..

    now if you have the set containing the identity and add another element, which will you add that would make a group?
    another, in that set, which elements are inverses?

    *the reason i do this is simply because, the set is finite..
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Amy
    Amy is offline
    Junior Member
    Joined
    Feb 2007
    Posts
    59
    Quote Originally Posted by kalagota View Post
    as i see it from your example, the set is

    S= \{ 2, 4, 6, 8\}

    and defines * by multiplication of elements modulo 10..

    am i right?

    from that, which do you think takes the role of the identity? it is one of the subgroups..
    also, if you want to have another subgroup, this must contain the identity..

    now if you have the set containing the identity and add another element, which will you add that would make a group?
    another, in that set, which elements are inverses?

    *the reason i do this is simply because, the set is finite..
    Thanks for the reply. But Not yet clear to me..
    I know subgroup is a sub set of that group and it must satisfy all the four properties of a group.
    How can we find all the subgroups?
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Global Moderator

    Joined
    Nov 2005
    From
    New York City
    Posts
    10,616
    Thanks
    9
    Quote Originally Posted by Amy View Post
    Thanks for the reply. But Not yet clear to me..
    I know subgroup is a sub set of that group and it must satisfy all the four properties of a group.
    How can we find all the subgroups?
    By Lagrange's theorem by possible subgroups can have orders: 1 or 2 or 4.

    Note if the order is 1 then it is simply the trivial subgroup.
    Note if the order is 4 then it is the improper (full) subgroup.

    Now if the order is 2 one of the elements needs to be the identity element. Now form all possible 2 element subsets one of which contains the identity element and see if the sub-group properties are satisfied.*


    *)Here is an even easier way. {e,a} is a subgroup if and only if it is closed under the binary operation. Since ee = e, and ea=ae=a, it means we just need to check whether a^2 is in {e,a}, i.e. a^2 = e.
    Follow Math Help Forum on Facebook and Google+

  6. #6
    MHF Contributor kalagota's Avatar
    Joined
    Oct 2007
    From
    Taguig City, Philippines
    Posts
    1,026
    the theorem TPH gave would really help you a lot..
    however, if you only know the definition of a subgroup of a group, then you could only rely on the axioms a group must satisfy..

    the set is finite..
    look at 3 axioms, one states that it must have an identity, and each element must have an inverse..

    the order of the set is small (only 4), thus you can just eliminate all the subsets which does not form a group..

    list all the subsets of singletons, pairwise and tiplewise.. then do the elimination process..

    exmaple.. {2}, {4}, {6}, {8}.. among these singletons, only {6} forms a subgroup of the set, because, it is closed on *, it is associative, (in fact) it is the identity and thus its inverse is itself.. while the others are not since they are not closed..

    try to do it pairwise, like {2,4},{2,6},... and eliminate those does not satisfy the axioms.. take note that 2 and 8 are inverses, thus, when the set contains 2, it must also contain 8.. therefore remove the subset that does not contain both 2 and 8..

    do it tripplewise.. note that TPH gave you Lagrange's Thm, thus you should get no subgroup of the group containing 3 elements..

    i hope, this reply could help you..
    Follow Math Help Forum on Facebook and Google+

Search Tags


/mathhelpforum @mathhelpforum