1. ## matrices

X is a 2 by 2 matric

2 -3
4 -1

multiplies by unkonw matrix X

=

-12 -9
1 3

Find the matrix X

2. Make the unknow matrix and label each part, eg.

$\begin{bmatrix}
{2}\;\; {-3}\\
{4}\;\;{-1}

\end{bmatrix} \cdot\begin{bmatrix}
{a}\;\; {b}\\
{c}\;\;{d}

\end{bmatrix}=\begin{bmatrix}
{-12}\;\; {-9}\\
{1}\;\;\;{3}

\end{bmatrix}$

Perform the multiplication and solve for the variables, eg.
$2a-3c=-12$
$4a-c=1$

3. Hello, DINOCALC09!

$X$ is a 2x2 matrix such that: . $\begin{pmatrix}2 & \text{-}3 \\ 4 & \text{-}1\end{pmatrix}\,X \;=\;\begin{pmatrix}\text{-}12 & \text{-}9 \\ 1 & 3 \end{pmatrix}$

Find the matrix $X$
Let $X \:=\:\begin{pmatrix}w & x \\ y & z\end{pmatrix}$

Then we have: . $\begin{pmatrix}2 & \text{-}3 \\ 4 & \text{-}1\end{pmatrix}\,\begin{pmatrix}w & x \\ y & z \end{pmatrix} \;=\;\begin{pmatrix}\text{-}12 & \text{-}9 \\ 1 & 3\end{pmatrix}$

. . . . $\begin{pmatrix}2w-3y & 2x-3z \\ 4w - y & 4x-z\end{pmatrix} \;=\;\begin{pmatrix}-12 & -9 \\ 1 & 3\end{pmatrix}$

We have two systems of equations: . $\begin{Bmatrix}2w - 3y & = & \text{-}12 \\ 4w - y &=&1\end{Bmatrix}\quad\begin{Bmatrix}2x-3z &=&\text{-}9 \\ 4x-z &=&3\end{Bmatrix}$

Solve them . . .

You should get: . $X \;=\;\begin{pmatrix}\frac{3}{2} & \frac{9}{5} \\ 5 & \frac{21}{5}\end{pmatrix}$

4. Originally Posted by DINOCALC09
X is a 2 by 2 matric

2 -3
4 -1

multiplies by unkonw matrix X

=

-12 -9
1 3

Find the matrix X
Solve
$\left ( \begin{matrix} 2 & -3 \\ 4 & -1 \end{matrix} \right ) X = \left ( \begin{matrix} -12 & -9 \\ 1 & 3 \end{matrix} \right )$

Multiply both sides by the inverse of the coefficient matrix:
$\left ( \begin{matrix} 2 & -3 \\ 4 & -1 \end{matrix} \right ) ^{-1} = \frac{1}{2 \cdot -1 - (-3) \cdot 4} \left ( \begin{matrix} -1 & 3 \\ -4 & 2 \end{matrix} \right )$

So
$\frac{1}{10} \left ( \begin{matrix} -1 & 3 \\ -4 & 2 \end{matrix} \right ) \left ( \begin{matrix} 2 & -3 \\ 4 & -1 \end{matrix} \right ) X = \frac{1}{10} \left ( \begin{matrix} -1 & 3 \\ -4 & 2 \end{matrix} \right ) \left ( \begin{matrix} -12 & -9 \\ 1 & 3 \end{matrix} \right )$

$X = \frac{1}{10} \left ( \begin{matrix} 15 & 18 \\ 50 & 42 \end{matrix} \right )$

-Dan