Proving a function is one-to-one

Problem:

Prove that the function f: Q ---> R, f(a/b) = (2^a)(3^b) is one to one, assuming that gcd(a,b) = 1, that is the fraction a/b is reduced.

I know f is one to one if it never maps 2 different elements to the same place, i.e. f(a) does not equal f(b) whenever a does not equal b.

I have tried looking at how other problems are proved to be one to one and am attempting to do it in a similar way:

Suppose f(a/b) = f(c/d)

then (2^a)(3^b) = (2^c)(3^d)

I'm not sure what to do though. I don't think I'm doing this right. Please help me with this problem.