Results 1 to 4 of 4

Math Help - orthogonal planes

  1. #1
    Senior Member
    Joined
    Sep 2013
    From
    Portland
    Posts
    481
    Thanks
    70

    orthogonal planes

    I have to find equation to the plane that contains line (-1,1,2) +(3,2,4)t and is perpendicular to plane 2x+y-3x+4=0
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Senior Member
    Joined
    Sep 2013
    From
    Portland
    Posts
    481
    Thanks
    70

    Re: orthogonal planes

    the plane will contain direction vector <2,1,-3> correct? because that is the normal vector of the given
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Member
    Joined
    Apr 2011
    From
    Somwhere in cyberspace.
    Posts
    90
    Thanks
    4

    Re: orthogonal planes

    Now, let's hope I don't toss you an incorrect one.

    One way to describe a line is by giving a point on that line and one direction vector which describes the orientation of the line in space.
    One way to describe a plane is by giving one point that is on the plane and two direction vectors that describe the orientation of the plane in space.

    The general form of the equation for the line that is built in this fashion is:
    \vec{q}=\vec{p}+t\vec{d}
    where t is scalar that varies over the entire set of real numbers. The vector \vec{p} is simply the point that is on the line. And the vector \vec{d} gives the direction from that point. By varying t over the real numbers we can get in \vec{q} the coordinates of any point that is on that line.

    The situation with the plane is similar, but we need two direction vectors (cannot be colinear, or we are not describing a plane):
    \vec{q}=\vec{p}+r\vec{u}+s\vec{v}
    Here r and s vary over the real numbers.

    We can describe a line in 2-dimensional space by alternative means, giving a point on the line and a perpendicular (to the line) vector.
    And we can do the same in 3-dimensional space for the plane. We need a point and perpendicular (to the plane) vector.
    We call these vectors normal. One line, respectively plane, can have many different normal vectors. All of them are though, colinear. For example if [1,1] is normal vector for some line, so are [2,2], [3,3],[4,4] etc.

    The equation of the line, built this way, looks like this:
    (\vec{p} - \vec{q})\vec{n}=\vec{0}
    Where \vec{p} is the known point on the plane, and \vec{n} is a normal vector to that plane. Any point \vec{q} that statisfies the equation is on the plane.

    Both types of equation of the plane (or line) are convenient for slightly different purposes. The first one gives very quick way of generating arbitrary points, laying on the described plane (think 3D computer graphics applications). The second is way more useful in giving an answer if some specific point lies on the plane, described by the equation.

    In addition, normal vectors have that wonderful property that if you have the "traditional" equation of the plane
    ax+by+cz=d
    the coefficients in front of the variables x, y, and z readily form normal vector to that plane. This is possible because any two planes
    ax+by+cz=d_1 and ax+by+cz=d_2 (same coefficients, different constant d) are parallel (try to solve the system of these equations and check what do you get for their intersection). So normal vector to ax+by+cz=d will be normal to ax+by+cz=0 too. And the normal vector to this plane is simply (a,b,c), because for any (x,y,z) on that plane [a,b,c] . [x, y, z] (sorry for writing the dot product so ugly) must be 0, otherwise the equation ax+by+cz=0 won't hold.

    Now to the problem:

    We are given a line, described by point and direction vector and that line is in our plane. We therefore have a point in our mystery plane [-1,1,2] and a direction vector [3,2,4]. We need another direction vector and we are almost ready. We are given perpendicular plane by it's "traditional" equation and we can immediately read off a normal vector [2,-1,3] this normal vector is the second direction vector we need. The equation is therefore

    [-1,1,2]+r[3,2,4]+s[2,-1,3]

    How we transfer from this equation to the "traditional" form? We need normal vector \vec{n} such that
    (1) \vec{n}.[3,2,4]=0
    (2) \vec{n}.[2,-1,3]=0

    which gives a nice system:

    3n_1+2n_2+4n_3=0
    2n_1-n_2,+3n_3=0

    Tree variables with two equations that guarantees many valid solutions, all laying on one line.

    3n_1+2n_2+4n_3=0
    +
    4n_1-2n_2,+6n_3=0

    gets

    7n_1+10n_3=0 \Leftrightarrow n_1=(-10/7)n_3

    gets

    2(-10/7)n_3 - n_2 + 3n_3=0 \Leftrightarrow -n_2 + (-20/7)n_3 + (21/7)n_3=0 \Leftrightarrow
    n_2=(1/7)n_3

    Choose for example n_3=7 which leads to [-10, 1, 7] and check

    [-10,1,7].[3,2,4]=0
    [-10,1,7].[2,-1,3]=0

    We have our \vec{n}=[-10,1,7] and we have our \vec{p}=[-1,1,2]

    (\vec{p} - \vec{q})\vec{n}=\vec{0} becomes
    [-1,1,2].[-10,1,7] - \vec{q}.[-10,1,7]=0 \Leftrightarrow \vec{q}[-10,1,7]=25

    So we have:

    -10q_1+q_2+7q_3=25 change q_1, q_2 and q_3 with x, y, z

    And then check how many mistakes have I made in the calculations
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Member
    Joined
    Apr 2011
    From
    Somwhere in cyberspace.
    Posts
    90
    Thanks
    4

    Re: orthogonal planes

    For starters the normal vector of the perpendicular plane is not [2,-1,3], but [2,1,-3].
    The idea is important
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Angle between planes and line of intersection of planes.
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: September 6th 2011, 12:08 PM
  2. Replies: 1
    Last Post: August 15th 2011, 04:32 AM
  3. Intersection of orthogonal planes
    Posted in the Advanced Algebra Forum
    Replies: 3
    Last Post: January 31st 2011, 09:50 AM
  4. Cross products and orthogonal planes/vectors
    Posted in the Pre-Calculus Forum
    Replies: 2
    Last Post: May 18th 2009, 11:02 AM
  5. Orthogonal Projections On Planes?
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: November 27th 2008, 04:23 AM

Search Tags


/mathhelpforum @mathhelpforum