I have shown that if a set of vectors (v1,...,vn) is linearly independant, then every vector v that is an element of <v1,...,vn> has a unique representation as a linear combination of vectors v1,...,vn.

Now I need to show that the converse statement is true, that is if a vector v has a unique representation as a linear combination of vectors v1,...,vn then the set of vectors (v1,...,vn) are linearly independant. Does anyone have suggestions on you show that?