1 Attachment(s)

Direct Producrs and Quotient Groups

In Beachy and Blair: Abstract Algebra, Section 3.8 Cosets, Normal Groups and Factor Groups, Exercise 17 reads as follows:

----------------------------------------------------------------------------------------------------------------------

17. Compute the factor group

----------------------------------------------------------------------------------------------------------------------

Since I did not know the meaning of "Compute the factor group" I proceeded to try to list them members of but had some difficulties, when I realised that I was unsure of whether the group was a group under multiplication or addition. SO essentially I did not know how to carry out group operations in .

Reading Beachy and Blair, Chapter 3 Groups, page 118 (see attachment) we find the following definition:

-------------------------------------------------------------------------------------------------------------

**3,3,3 Definition.** Let and be groups. The set of all ordered pairs such that and is called the direct product of and , denoted by .

----------------------------------------------------------------------------------------------------------------

Then Proposition 3,3,4 reads as follows:

-----------------------------------------------------------------------------------------------------------------

**3,3,4 Proposition.** Let and be groups.

(a) The direct product is a group under the operation defined for all by

.

(b) etc etc

------------------------------------------------------------------------------------------------------------------

However in Example 3.3.3 on page 119 we find the group dealt with as having addition as its operation.

My question is - what is the convention on direct products of - does one use addition or multiplication?

Presumably, since the operations involve integers the matter is more than one of notation?

Can someone please clarify this matter?

Would appreciate some help.

Peter

Re: Direct Producrs and Quotient Groups

In general is not a group under multiplication. For example is not a group under multiplication, as 2*3=0. However the group of units mod 6 IS a group under multiplication.

I feel that the book is using the same notation as Gallian's Contemporary Abstract Algebra. Where denotes the group under addition.

So in this case, it's useful to compute the order of (2,2). The order of 2 in is 3 and the order of 2 in is 2. So the order of (2,2) is the least common multiple of 2 and 3, which is 6. As is a group of order 24, the factor group will be of order $24/6 = 4$. So just find a representative for each coset and you'll "compute the factor group"