Hello,

I would like to check if the work I have done for this problem is valid and accurate. Any input would be appreciated. Thank you.

Problem statement: Let G be a group of order 150. Let H be a subgroup of G of order 25. Consider the action of G on G/H by left multiplication: . Use the permutation representation of the action to show that G is not simple.

My attempt: Let be the group of permutations on G/H. Then, the action of G on G/H defines a homomorphism . We know the order of is 720. Since the order of G does not divide 720, and is a subgroup of , f cannot be one-to-one. Thus, distinct in such that . Thus, . Since is a normal subgroup of , we have found a normal subgroup of . Also, since is non-trivial, then is a proper normal subgroup of $G.$ Hence is not simple.

Any suggestions or corrections?