I am trying to clarify my understanding of Proposition 11 of Dummit and Foote Ch13 Field Theory concerning the degree of over F.

Proposition 11 reads as follows:

---------------------------------------------------------------------------------------------------------------------------------------------------------

Proposition 11.Let be algebraic over the field F and let be the field generated by over F.

Then

so that in particular

i.e. the degree of over F is the degree of the extension it generates over F

--------------------------------------------------------------------------------------------------------------------------------------------------------------

However Corollary 7 (Dummit and Foote page 518) states the following:

-----------------------------------------------------------------------------------------------------------------------------------------------------------------

Corollary 7. Suppose in Theorem 6 that p(x) is of degree n. Then

-------------------------------------------------------------------------------------------------------------------------------------------------------------------

Given that consists of polynomials of degree (n-1) should not the degree of - that is the degree of over F be one less than the degree of the minimal polynomial?

Can someone please clarify this situation for me

Peter