Let B = {$\displaystyle u_1, u_2, u_3$} and B' = {$\displaystyle v_1, v_2, v_3$}

Be the two bases for $\displaystyle R^3$

given that the transition matrix from B' to B is

P = $\displaystyle \begin{bmatrix}1 & -1 & 2\\0 & 1 & 2\\3 & 0 & -1\end{bmatrix}$

how can i find the $\displaystyle u_1, u_2, u_3$ as linear combinations of $\displaystyle v_1, v_2, v_3$