Re-arranging an inequality

I am trying to solve the inequality

[(4x - x^2 - 7) / (x^2 - 1)] >_ 3

I am still at the re-arranging stage and I get up to the point of

[(4x - x^2 - 7) / (x^2 - 1)] -3 >_ 0 which I understand how to get to.

But I do not understand how to get the below line of.

[(4x - 4x^2 - 4) / (x^2 - 1)] >_ 0

Re: Re-arranging an inequality

Quote:

Originally Posted by

**jezb5** I am trying to solve the inequality

[(4x - x^2 - 7) / (x^2 - 1)] >_ 3

I am still at the re-arranging stage and I get up to the point of

[(4x - x^2 - 7) / (x^2 - 1)] -3 >_ 0 which I understand how to get to.

But I do not understand how to get the below line of.

[(4x - 4x^2 - 4) / (x^2 - 1)] >_ 0

You have two expressions here: One with all the variables and the three. Put:

$\displaystyle \frac{ 4x - x^2 - 7}{x^2 - 1 } + \frac{ -3(x^2 - 1)}{x^2 - 1 }$

-Dan

Re: Re-arranging an inequality

Quote:

Originally Posted by

**topsquark** You have two expressions here: One with all the variables and the three. Put:

$\displaystyle \frac{ 4x - x^2 - 7}{x^2 - 1 } + \frac{ -3(x^2 - 1)}{x^2 - 1 }$

-Dan

Thank you, that makes sense :)