"Prove that lim x->inf (x ^ (1/x)) = 1."

I'm stuck on this. I was able to show that the limit exists, is finite, and therefore unique. But showing that it equals 1 is eluding me. If I raise both sides to the xth power, I get x = 1^x, which is clearly wrong. So what do I do to show that the limit is 1? Proof by contradiction? Induction? Any hints on how to proceed?