If we neutralize the operations of ADDITION and MULTIPLICATION, we arrive at a set -- let's call it it a subset of the "Neutral Set."

FOR EXAMPLE, LET A+B = A*B = C .... THEN THE OPERATIONS OF ADDITION AND MULTIPLICATION ARE HELD NEUTRAL TO EACH OTHER. WE CAN SOLVE THIS EQUATION:

A+B-B = AB-B

A = B(A-1)

A/(A-1) = B AND SINCE BOTH OPERATIONS ARE COMMUTATIVE,

B/(B-1) = A .... (WE MIGHT JUST AS EASILY HAVE STARTED BY SUBTRACTING A FROM BOTH SIDES). AT ANY RATE,

A HAS NOW BEEN ISOLATED AND DEFINED IN TERMS OF B AND 1 AND B MAY NOT EQUAL 1 OR THE DENOMINATOR GOES TO ZERO, AND

B HAS NOW BEEN ISOLATED AND DEFINED IN TERMS OF A AND 1 AND A MAY NOT EQUAL 1 OR THE DENOMINATOR GOES TO ZERO.

FURTHER, SINCE AB = C AND B = A/(A-1), then C = A^2/(A-1) = B^2/(B-1).

It is a simple matter to then see that for the number A=5, if B=5/4, THEN A+B = A*B = C.

It is also simple to do A-B = A*B, A+B = A/B, and A-B = A/B.

WE CAN SOLVE FOR AB = A^B, THUS NEUTRALIZING MULTIPLICATION VS. EXPONENTIATION.

FURTHER, BY A SEQUENCE OF STEPS, WE CAN CALCULATE A+B+C+D+... = A*B*C*D*...

BY THE NEWTON-RAPHE METHOD, WE CAN DO A+B = A^B, BUT I HAVE YET TO FIND A SIMPLER METHOD, AND THAT'S WHERE I'M ASKING FOR HELP.

THE SAME APPLIES TO A+B = A SQRT(B) AND A-B = A SQRT(B) AND A-B = A^B (FOR FRACTIONS).