Results 1 to 4 of 4

Math Help - GPS - Finding a quadratic equation from three linear equations

  1. #1
    Newbie
    Joined
    Oct 2012
    From
    Scandinavia
    Posts
    3

    GPS - Finding a quadratic equation from three linear equations

    The problem is regarding GPS equations with four satellites with their location denoted as (Ai, Bi, Ci).
    the transmission speed is approximately c (speed of light).
    ti is the measured time intervals.
    x, y and z is the receiver location, and d is the difference between the synchronized time on the four sattelite clocks and the earth-bound receiver clock.

    (x - A1)2 + (y - B1)2 + (z - C1)2 = [c*(t1 - d)]2
    (x - A2)2 + (y - B2)2 + (z - C2)2 = [c*(t2 - d)]2
    (x - A3)2 + (y - B3)2 + (z - C3)2 = [c*(t3 - d)]2
    (x - A4)2 + (y - B4)2 + (z - C4)2 = [c*(t4 - d)]2
    I am to find the quadratic equation obtained from subtracting the last three equations from the first, and use those new three linear equations to eliminate x, y and z before finally substituting into any of the original equations. This is said to produce a quadratic equation in the single variable d.

    I tried to do this by hand, and it got ugly, really ugly. Now I am stuck trying to figure out an easier way to accomplish this. Any ideas?
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Senior Member
    Joined
    Jul 2010
    From
    Vancouver
    Posts
    432
    Thanks
    16

    Re: GPS - Finding a quadratic equation from three linear equations

    With this kind of question it really helps to break it down into bite-sized chunks to make it easier to write out. If you look at this carefully, you really have to do the difficult task once, and the rest will follow by analogy. For example, when you are subtracting equation 2 from equation 1, you have to calculate (x-A_1)^2-(x-A_2)^2. In general, this is what we get from a term like that

    (u-a_1)^2-(u-a_2)^2 = u^2 - 2ua_1  +a_1^2 -u^2+2ua_2-a_2^2= 2(a_2-a_1)u+(a_1^2-a_2^2)

    You can substitute anything for u and anything for a_1,a_2. For example, this immediately gives the LHS of the first linear equation

    2(A_2-A_1)x + 2(B_2-B_1)y+2(C_2-C_1)z + (A_1^2-A_2^2+B_1^2-B_2^2+C_1^2-C_2^2)

    The RHS for this equation can be obtained by using u = cd, a_1 = ct_1, a_2 = ct_2. We have the RHS

    2c^2d(t_2-t_1)+c^2(t_1^2-t_2^2)

    Here is what happens when you subtract the 2nd, 3rd and 4th equations from the 1st respectively. The LHSs are

    2(A_2-A_1)x + 2(B_2-B_1)y+2(C_2-C_1)z + (A_1^2-A_2^2+B_1^2-B_2^2+C_1^2-C_2^2)
    2(A_3-A_1)x + 2(B_3-B_1)y+2(C_3-C_1)z + (A_1^2-A_3^2+B_1^2-B_3^2+C_1^2-C_3^2)
    2(A_4-A_1)x + 2(B_4-B_1)y+2(C_4-C_1)z + (A_1^2-A_4^2+B_1^2-B_4^2+C_1^2-C_4^2)

    The RHSs are

     2c^2d(t_2-t_1)+c^2(t_1^2-t_2^2)
    2c^2d(t_3-t_1)+c^2(t_1^2-t_3^2)
    2c^2d(t_4-t_1)+c^2(t_1^2-t_4^2)

    Granted, these are quite a bit more unappetizing in terms of their content, but their form is superb because they are all linear. And with linear equations it is relatively you can use linear algebra to solve them.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie
    Joined
    Oct 2012
    From
    Scandinavia
    Posts
    3

    Re: GPS - Finding a quadratic equation from three linear equations

    Thanks that really helps. A hint in the problem says that a formula for x, y and z in terms of d can be obtained from:

    0=det[uy|uz|xux + yuy + zuz + dud + w]

    I am not sure where to go from here, as I am having trouble understanding how this square matrix (uy|uz|xux + yuy + zuz + dud + w) is supposed to look like.
    uy, uz, ux and w are all vectors.
    Last edited by matsjoer; October 18th 2012 at 03:40 AM.
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Newbie
    Joined
    Oct 2012
    From
    Scandinavia
    Posts
    3

    Re: GPS - Finding a quadratic equation from three linear equations

    Im closing in on the deadline for the delivery of my problems, and the teacher is of course unavailable. Any help would be appreciated.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Simulatenous equations (Quadratic + linear)
    Posted in the Algebra Forum
    Replies: 4
    Last Post: March 27th 2011, 06:49 PM
  2. Linear,quadratic,exponential equations?
    Posted in the Algebra Forum
    Replies: 2
    Last Post: November 9th 2009, 03:11 PM
  3. Simultaneous Linear and Quadratic Equations
    Posted in the Pre-Calculus Forum
    Replies: 2
    Last Post: March 23rd 2009, 01:10 AM
  4. Simultaneous Linear and Quadratic Equations
    Posted in the Algebra Forum
    Replies: 3
    Last Post: March 23rd 2009, 12:32 AM
  5. Solving Quadratic and Linear Equations
    Posted in the Algebra Forum
    Replies: 2
    Last Post: February 10th 2009, 11:52 AM

Search Tags


/mathhelpforum @mathhelpforum