1. ## Spatial vectors

Let $\displaystyle \vec{a}$ and $\displaystyle \vec{a}$ be 3d vectors.

Explain in words with the aid of a diagram why:
($\displaystyle \vec{a}$x$\displaystyle \vec{b}$).$\displaystyle \vec{b}$ = 0.

Explain with the aid of a diagram, that if
$\displaystyle \vec{b}$x($\displaystyle \vec{a}$.$\displaystyle \vec{b}$) = $\displaystyle \vec{a}$,
what is $\displaystyle \vec{a}$.$\displaystyle \vec{b}$?

should be using right hand rules etc

2. ## Re: Spatial vectors

Originally Posted by whyyie
Explain in words with the aid of a diagram why:
($\displaystyle \vec{a}$x$\displaystyle \vec{b}$).$\displaystyle \vec{b}$ = 0.

Explain with the aid of a diagram, that if
$\displaystyle \vec{b}$x($\displaystyle \vec{a}$.$\displaystyle \vec{b}$) = $\displaystyle \vec{a}$,
what is $\displaystyle \vec{a}$.$\displaystyle \vec{b}$?
These should be easy to answer if you set up a diagram.

What do we know, geometrically, about the cross product of two vectors? And when will the dot product of two vectors be zero?