Results 1 to 5 of 5

Math Help - System of linear equations using matrices

  1. #1
    Newbie
    Joined
    Mar 2012
    Posts
    24

    System of linear equations using matrices

    Hi again!
    So even though I more or less know how to solve a system of linear equations, I still can't help keep getting lost whenever things get more complicated.

    For example, I've got this linear system that I can't seem to solve even though the end result is supposed to be rather simple. So, I've got this linear system:
    |2x1 + x2 - 5x3 + x4 = 8
    |x1 - 3x2 + 0x3 -6x4 = 9
    |0x1 + 2x2 - x3 + 2x4 = -5
    |x1 + 4x2 -7x3 + 6x4 = 0

    And so, using the coefficients, you get this coefficient matrix:
    2 1 -5 1 | 8
    1 -3 0 -6 | 9
    0 2 -1 2 | -5
    1 4 -7 6 | 0

    Anyone care to help from here on? I've certainly tried, but my level of maths isn't enough to get an answer out of that.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor

    Joined
    Aug 2006
    Posts
    18,607
    Thanks
    1574
    Awards
    1

    Re: System of linear equations using matrices

    Quote Originally Posted by JacobE View Post
    Hi again!
    So even though I more or less know how to solve a system of linear equations, I still can't help keep getting lost whenever things get more complicated.

    For example, I've got this linear system that I can't seem to solve even though the end result is supposed to be rather simple. So, I've got this linear system:
    |2x1 + x2 - 5x3 + x4 = 8
    |x1 - 3x2 + 0x3 -6x4 = 9
    |0x1 + 2x2 - x3 + 2x4 = -5
    |x1 + 4x2 -7x3 + 6x4 = 0
    Look at the inverse.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Senior Member DeMath's Avatar
    Joined
    Nov 2008
    From
    Moscow
    Posts
    473
    Thanks
    5

    Re: System of linear equations using matrices

    Use Gauss–Jordan elimination.

    1) reverse rows 1 and 2;
    2) subtract row 1 from row 4, multiply row 1 by 2 and subtract it from row 2;
    3) subtract row 2 from row 4;
    4) add row 3 to row 1, multiply row 3 by 3 and subtract it from row 2;
    5) multiply row 2 by 2 and subtract it from row 3;
    6) add row 4 to row 3;
    7) multiply row 3 by 2 and add it to row 4;
    8) devide row 4 by -27;
    9) multiply row 4: by 13 and add it row 3, by -7 and add it row 2, by 4 and add it row 1;
    10) multiply row 3 by 2 and add it to row 2, add row 3 to row 1;
    11) add row 2 to row 1.

    \left[\!\begin{array}{*{20}{r}}2&1&{-5}&1\!\!&\vline\!\!&8\\1&{-3}&0&{-6}\!\!&\vline\!\!&9\\0&2&{-1}&2\!\!&\vline\!\!&{-5}\\1&4&{-7}&6\!\!&\vline\!\!&0\end{array} \!\right]\mathop{\sim}^{{}^{\bold{1)}}} \left[\!\begin{array}{*{20}{r}}1&{-3}&0&{-6}\!\!&\vline\!\!&9\\2&1&{-5}&1\!\!&\vline\!\!&8\\0&2&{-1}&2\!\!&\vline\!\!&{-5}\\1&4&{-7}&6\!\!&\vline\!\!&0\end{array}\!\right]\mathop{\sim}^{{}^{\bold{2)}}} \left[\!\begin{array}{*{20}{r}}1&{-3}&0&{-6}\!\!&\vline\!\!&9\\0&7&{-5}&{13}\!\!&\vline\!\!&{-10}\\0&2&{-1}&2\!\!&\vline\!\!&{-5}\\0&7&{-7}&{12}\!\!&\vline\!\!&{-9}\end{array}\!\right]

    \mathop{\sim}^{{}^{\bold{3)}}}\left[\!\begin{array}{*{20}{r}}1&{-3}&0&{-6}\!\!&\vline\!\!&9\\0&7&{-5}&{13}\!\!&\vline\!\!&{-10}\\0&2&{-1}&2\!\!&\vline\!\!&{-5}\\0&0&{-2}&{-1}\!\!&\vline\!\!&1\end{array}\!\right]\mathop{\sim}^{{}^{\bold{4)}}} \left[\!\begin{array}{*{20}{r}}1&{-1}&{-1}&{-4}\!\!&\vline\!\!&4\\0&1&{-2}&7\!\!&\vline\!\!&5\\0&2&{-1}&2\!\!&\vline\!\!&{-5}\\0&0&{-2}&{-1}\!\!&\vline\!\!&1\end{array}\!\right]\mathop{\sim}^{{}^{\bold{5)}}} \left[\!\begin{array}{*{20}{r}}1&{-1}&{-1}&{-4}\!\!&\vline\!\!&4\\0&1&{-2}&7\!\!&\vline\!\!&5\\0&0&3&{-12}\!\!&\vline\!\!&{-15}\\0&0&{-2}&{-1}\!\!&\vline\!\!&1\end{array}\!\right]

    \mathop{\sim}^{{}^{\bold{6)}}}\left[\!\begin{array}{*{20}{r}}1&{-1}&{-1}&{-4}\!\!&\vline\!\!&4\\0&1&{-2}&7\!\!&\vline\!\!&5\\0&0&1&{-13}\!\!&\vline\!\!&{-14}\\0&0&{-2}&{-1}\!\!&\vline\!\!&1\end{array}\!\right]\mathop{\sim}^{{}^{\bold{7)}}} \left[\!\begin{array}{*{20}{r}}1&{-1}&{-1}&{-4}\!\!&\vline\!\!&4\\0&1&{-2}&7\!\!&\vline\!\!&5\\0&0&1&{-13}\!\!&\vline\!\!&{-14}\\0&0&0&{-27}\!\!&\vline\!\!&{-27}\end{array}\!\right]\mathop{\sim}^{{}^{\bold{8)}}} \left[\!\begin{array}{*{20}{r}}1&{-1}&{-1}&{-4}\!\!&\vline\!\!&4\\0&1&{-2}&7\!\!&\vline\!\!&5\\0&0&1&{-13}\!\!&\vline\!\!&{-14}\\0&0&0&1\!\!&\vline\!\!&1\end{array}\!\right]

    \mathop{\sim}^{{}^{\bold{9)}}}\left[\!\begin{array}{*{20}{r}}1&{-1}&{-1}&0\!\!&\vline\!\!&8\\0&1&{-2}&0\!\!&\vline\!\!&{-2}\\0&0&1&0\!\!&\vline\!\!&{-1}\\0&0&0&1\!\!&\vline\!\!&1\end{array}\!\right]\mathop{\sim}^{{}^{\bold{10)}}} \left[\!\begin{array}{*{20}{r}}1&{-1}&0&0\!\!&\vline\!\!&7\\0&1&0&0\!\!&\vline\!\!&{-4}\\0&0&1&0\!\!&\vline\!\!&{-1}\\0&0&0&1\!\!&\vline\!\!&1\end{array}\!\right]\mathop{\sim}^{{}^{\bold{11)}}} \left[\!\begin{array}{*{20}{r}} 1&0&0&0&\!\!\vline&\!\!3\\ 0&1&0&0&\!\!\vline&\!\!{-4}\\ 0&0&1&0&\!\!\vline&\!\!{-1}\\ 0&0&0&1&\!\!\vline&\!\!1\end{array}\!\right]
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Senior Member
    Joined
    Mar 2012
    From
    Sheffield England
    Posts
    440
    Thanks
    76

    Re: System of linear equations using matrices

    I take it we could have stopped at stage 7 and said d=1, c-13d=-14 etc.
    Follow Math Help Forum on Facebook and Google+

  5. #5
    MHF Contributor

    Joined
    Apr 2005
    Posts
    15,537
    Thanks
    1392

    Re: System of linear equations using matrices

    Yes, once you have a matrix row-reduced to upper (or lower) triangular form, you can solve the set of equations by "back-substitution".

    Actually, I find the method a little bit peculiar- but perfectly valid. Personally, I tend to get the "0"s in each column, above, as well as below, the "pivot" number as I am working on the column the first time, not go through all columns getting "0" below the pivot, then back, through getting "0"s above the pivot.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Rank of matrices and system of linear equations
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: November 24th 2010, 09:06 AM
  2. Solving a system of linear equations using matrices.
    Posted in the Advanced Algebra Forum
    Replies: 2
    Last Post: May 12th 2010, 05:09 AM
  3. Replies: 1
    Last Post: November 30th 2009, 11:13 PM
  4. Replies: 7
    Last Post: November 29th 2009, 08:46 AM
  5. Replies: 1
    Last Post: April 15th 2008, 08:51 AM

Search Tags


/mathhelpforum @mathhelpforum