Hi There,

I have a couple of example questions that I'm trying to get my head around, a bit of guidance would be fabulous.

S:=\{f\in\mathcal{Q}[X,Y]\mid f(X,Y)=f(Y,X) \mbox{ and } \deg(f)\geq 0\}

1a: Give two polynomials that belong to S.
1b: Find a finite basis of the ideal (S) of \mathcal{Q}[X,Y] and justify your answer.

I then have the question where the questions are the same but based on this
S:=\{f\in\mathcal{Q}[X,Y]\mid f(X,Y)=-f(Y,X)\}.