Results 1 to 5 of 5
Like Tree1Thanks
  • 1 Post By Deveno

Math Help - |G|=120, |A|=|B|=60, A, B normal in G. Then |A : A \cap B| < 3.

  1. #1
    Member
    Joined
    Feb 2009
    Posts
    138

    |G|=120, |A|=|B|=60, A, B normal in G. Then |A : A \cap B| < 3.

    Hi: Let G be a group, A, B subgroups, |G| = 120, |A| = |B| = 60, A and B normal in G. Is there any reason why the following should be true?: |A : A \cap B| < 3. Thanks.

    EDIT: f: G/B --> G/A, f(xB) = xA. Then f is a homomorphism and is onto, and its kernel is AB/B. By the homomorphism theorem (G/B)/(AB/B) isomorphic to G/A. Therefore G/A isomorphic to (G/B)/(A/A \cap B). Hence |(G/B)/(A/A \cap B)| = |G/A| and |B| = |A \cap B| from which |B : A \cap B| = 1. But I possitively know there is something wrong with this, for in some cases |B : A \cap B| = 2.
    Last edited by ENRIQUESTEFANINI; April 29th 2012 at 09:42 AM.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Member Sylvia104's Avatar
    Joined
    Mar 2012
    From
    London, UK
    Posts
    107
    Thanks
    37

    Re: |G|=120, |A|=|B|=60, A, B normal in G. Then |A : A \cap B| < 3.

    Quote Originally Posted by ENRIQUESTEFANINI View Post
    f: G/B --> G/A, f(xB) = xA.
    Shouldn't you verify that this function is well defined? It may be that there exist x,y such that xB=yB but xA\ne yA in which case you won't have a well-defined function.
    Last edited by Sylvia104; April 29th 2012 at 10:02 AM.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Member
    Joined
    Feb 2009
    Posts
    138

    Re: |G|=120, |A|=|B|=60, A, B normal in G. Then |A : A \cap B| < 3.

    Yes. The function seems to be not well defined. Instead, let M = A \cap B, f: G/M --> G/B, f(xM) = xB, Then f is well defined. And the homomorphism theorem leads me to G/B isomorphic to (G/M) / (BM/M) which gives |A \cap B| \leq |B| (\leq is "less than or equal"). That is, I get nothing.

    The whole picture is this: There is a theorem that states
    3.2.12 Let G be a group of order 60, which is not 5-closed. Then
    (a) G is simple.
    (b) The maximal subgroups of G are the normalizers of its Sylow subgroups.

    When the proof ends, the author adds: Let G be as in 3.2.12 and U:= N_G(G_2) [here G_2 is some Sylow 2-subgroup]. Then |G : U| = 5, and 3.1.2 yields a monomorphism from G into the symmetric group S_5 [3.1.2 is a generalization of Cayley's theorem]. Hence G is isomorphic to a subgroup A of index 2 in S_5. Let A_5 be the alternating group of degree 5 [the reader knows nothing about symmetric groups at this point in the book]. Then also |S_5 : A_5| = 2, so A and A_5 are both normal subgroups of order 60 in S_5.

    Fine up to here. But now he proceeds: In particular by the homomorphism theorem |A : A \cap A_5| \leq 2 [this is what I DO NOT UNDERSTAND], and the simplicity of A yields A = A_5. This shows that every group of order 60 that is not 5-closed is isomorphic to A_5.
    Follow Math Help Forum on Facebook and Google+

  4. #4
    MHF Contributor

    Joined
    Mar 2011
    From
    Tejas
    Posts
    3,401
    Thanks
    762

    Re: |G|=120, |A|=|B|=60, A, B normal in G. Then |A : A \cap B| < 3.

    there is a theorem that goes: if G is a subgroup of S5 and H is a subgroup of G then either:

    1. H∩A5 = H, or
    2. [H:H∩A5] = 2

    (either half the elements of H are even, or all of them are even).

    consider the homomorphism sgn:H→{1,-1}, where sgn(h) = 1 if h is even, sgn(h) = -1 if h is odd. what is its kernel? it is H∩A5 (the even elements of H).

    since H/H∩A5 is isomorphic to a subgroup of {1,-1}, we have exactly two choices:

    1. H/H∩A5 ≅ {1}, in which case H∩A5 = H (everything maps to the identity of {1,-1}).
    2. H/H∩A5 ≅ {1,-1}, in which case H∩A5 is of index 2 (half the elements of H map to the identity).
    Thanks from ENRIQUESTEFANINI
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Member
    Joined
    Feb 2009
    Posts
    138

    Re: |G|=120, |A|=|B|=60, A, B normal in G. Then |A : A \cap B| < 3.

    Someone told me how to prove it by using the identity |AB| = |A||B| / |A \cap B|. But I like your proof better as it makes use of the homomorphism theorem. Thanks a lot.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 3
    Last Post: March 22nd 2012, 04:01 PM
  2. Replies: 1
    Last Post: January 16th 2012, 08:21 PM
  3. A normal Moore space is completely normal
    Posted in the Differential Geometry Forum
    Replies: 1
    Last Post: March 19th 2011, 01:52 PM
  4. Normal / Bivariate Normal distribution
    Posted in the Advanced Statistics Forum
    Replies: 0
    Last Post: May 24th 2010, 04:42 AM
  5. Replies: 1
    Last Post: April 20th 2008, 07:35 PM

Search Tags


/mathhelpforum @mathhelpforum