Attachment 23585
Why aren't these two groups isomorphic? They both have the same number of elements with the same orders
Thanks
Printable View
Attachment 23585
Why aren't these two groups isomorphic? They both have the same number of elements with the same orders
Thanks
the group $\displaystyle \mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3$ is abelian, but in $\displaystyle \mathrm{SL}_3(\mathbb{Z}_3)$, if:
$\displaystyle A = \begin{bmatrix}1&1&0\\0&1&2\\0&0&1 \end{bmatrix}, B = \begin{bmatrix}1&1&0\\0&1&1\\0&0&1 \end{bmatrix}$, then
$\displaystyle AB = \begin{bmatrix}1&2&1\\0&1&0\\0&0&1 \end{bmatrix}, BA = \begin{bmatrix}1&2&2\\0&1&0\\0&0&1 \end{bmatrix}$,
so this group is non-abelian.