Hello,
I need some help with this problem:
The instructions are to find the eigenvalues and eigenvectors of this n by n matrix. I've tried to use to get the characteristic polynomial, but I can't seem to finish it.
I'd be grateful for any hints.
Hello,
I need some help with this problem:
The instructions are to find the eigenvalues and eigenvectors of this n by n matrix. I've tried to use to get the characteristic polynomial, but I can't seem to finish it.
I'd be grateful for any hints.
Here are a few observations that may be useful.
First, The for all n.
This gives that so zero is an eigenvalue of multiplicity n-2.
When you compute and reduce to row echelon form you can see a pattern for the eigenvectors. Just write out a few small cases and look for the pattern.
For the case when is even we get
This implies that the polynomial is in the annihilating Ideal, so the minimum polynomial must divide
so the only possible eigenvalues are 0 and . The two cases I checked admitted 2 eigenvectors for the eigenvalue
When I computed the the matrix and reduced to row echelon form for n=4 and n=6 there seems to be a pattern for the eigenvectors . I hope this helps.
I haven't discovered anything useful for the case when n is odd.