Consider $\displaystyle w(i) = \sum_{j=0}^{i-1} (-1)^j(i-j)^n{i \choose j}$
where $\displaystyle i=1,2,3,...$ and $\displaystyle n=1,2,3,...$
Question: Prove $\displaystyle w(i)=0$ if $\displaystyle i>n$.
---------------------------------------------------------------

Furthermore, suppose $\displaystyle {f}_{i}(x) = \sum_{j=0}^{i-1} (-1)^j(i-j)^x{i \choose j}$
where $\displaystyle i=1,2,3,...$ and $\displaystyle x \in \mathbb{R}$
Question: Are $\displaystyle x=1,2,3,...,i-1$ the only zeros of $\displaystyle {f}_{i}(x)$?

Motivation for $\displaystyle w(i)$ see here: http://www.mathhelpforum.com/math-he...ty-194323.html where it's defined recursively.