Let K1={a + (2^0.5)*b} | a,b rational numbers}, and K2={a + (3^0.5)*b} | a,b rational numbers} be two fields with the common multiplication and addition. Isomorphs are the following vector spaces :
(Q^n ., +; K1) and (Q^n ., +; K2) ?
Let K1={a + (2^0.5)*b} | a,b rational numbers}, and K2={a + (3^0.5)*b} | a,b rational numbers} be two fields with the common multiplication and addition. Isomorphs are the following vector spaces :
(Q^n ., +; K1) and (Q^n ., +; K2) ?
If you are asking whether and are isomorphic as vector spaces over , then I have only one question--what are the dimensions of each of these spaces.