Results 1 to 3 of 3

Math Help - Module Help

  1. #1
    Member
    Joined
    Mar 2009
    Posts
    76

    Module Help

    I've taken an undergraduate course in ring theory, but in my graduate algebra course we just started modules, and I'm kind of confused.

    - What's the difference between modules and Ideals?
    - Are modules not closed under multiplication?
    - What criteria is necessary to show something is a submodule? In my definition I just have, "closed under the action of ring elements (rn in N for a r in R n in N). But I'm not quite sure what that means. In some examples they just show a + rb is in N for all r in R, a,b in N. But sometimes they show r1(a+r2b) in N. What do I have to show in general?

    In the book they keep talking about how modules are very similar to vector spaces... but I'm not familar with the definition of a vector space, so could someone please explain it just in relation to rings and Ideal? Thanks.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor

    Joined
    Mar 2011
    From
    Tejas
    Posts
    3,392
    Thanks
    759

    Re: Module Help

    rings are a special kind of module. modules do not, in general, have a multiplication MxM-->M, but just a weaker "action" RxM-->M.

    suppose we have a submodule N of a module M.

    this means that (N,+) is a subgroup of (M,+) and that the action of R on M restricted to N yields an action on N, rn is in N for all r in R, and n in N.

    well, if M = R, then in fact, a sub-module of R is the same thing as an ideal of R. the idea is that modules are "more general" than rings, we don't have to define m'm, for all m,m' in M, we just need rm to be defined for some ring R (if the ring is Z, we just get an abelian group, so modules generalize abelian groups as well).

    the idea is this: suppose we have an abelian group, M. well, if we have a multiplication on M, such that left-multiplication by a in M and right-multiplication by a is an additive homomorphism:

    a(m+m') = am + am'
    (m+m')a = ma + m'a

    we have a ring.

    but we could just have:

    1. r(m+m') = rm + rm',
    2. (r+r')m = rm + r'm, where R is just a ring (not necessarily even a subset of M).

    the first says that multiplication by r is a group homomorphism M-->M (that is, multiplication by r is an endomorphism of M). the second says that the map r--->r.__ is a homomorphism from (R,+) to (End(M),+) (where the addition of two endomorphism f,g in End(M) is given by (f+g)(m) = f(m) + g(m)).

    but End(M) has a natural ring structure on it, not only can we add endomorphisms, but we can compose them, too, and composition is distributive over the addition of End(M). so it natural to require that the map r-->r.__ be a ring-homomorphism, as well:

    3. (rs._)(m) = (rs)m = r(sm) = (r._)o(s._)(m). and if R has unity:

    4. (1._)(m) = 1m = m = id_M(m).

    obviously, if we have a ring as our abelian group (R,+) = (M,+), the ring-homomorphism r-->r._ satisfies 1-4 as a straight-forward consequence of the distributive laws.

    that is, all rings are modules (over themselves, at the very least), but not all modules are rings.

    the criteria for showing N is a submodule of M are straight-forward:

    1. N cannot be empty (we know that at the very least, 0 must be in N).
    2. if a,b are in N, a+b must be in N.
    3. if a is in N, and r is in R, ra must be in N.

    (condition 1 is often glossed over, but you should keep it in mind).

    note that if R has unity, then a+rb in N (for all a,b in N, r in R) is equivalent to 2 & 3: take r = 1, and we get a+b in N, take a = 0, and we get rb in N. if R has unity, the third condition is equivalent to the second, just take r1 = 1. these are just "one-step tests" as compared to "two-step tests" (we're just combining conditions 2&3 into one condition).
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Member
    Joined
    Mar 2009
    Posts
    76

    Re: Module Help

    Ohh, okay, thank you so much!
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 6
    Last Post: November 30th 2011, 02:50 AM
  2. About some module over a DVR
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: April 13th 2011, 12:48 AM
  3. k[x]-module
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: May 20th 2010, 03:03 PM
  4. R-module
    Posted in the Advanced Algebra Forum
    Replies: 0
    Last Post: February 20th 2009, 10:14 AM
  5. Module 77
    Posted in the Advanced Algebra Forum
    Replies: 4
    Last Post: March 26th 2008, 01:30 PM

Search Tags


/mathhelpforum @mathhelpforum