Hi,

A is a 2 by 2 matrix:

a 1

ab b

i found the eigenvalues λ: 0 and a+b,

the corresponding (column)eigenvectors:

[1/√(1+a^2) -a/√(1+a^2)] & [1/b√(1+(1/b)^2) 1/√(1+(1/b)^2)]

Wich gives matrix Q:

1/√(1+a^2) 1/b√(1+(1/b)^2)

-a/√(1+a^2) 1/√(1+(1/b)^2)

Now i have to show that inverse(Q) * A * Q = Λ (diagonalization of A)

I get inverse(Q): (found det(Q)= 1+a)

1/(1+a)(1/√(1+a^2)) a/(1+a)√(1+a^2)

-1/(1+a)(b√(1+(1/b)^2)) 1/(1+a)√(1+(1/b)^2)

but i'm not getting the right anwser. What am i doing wrong? Is there a quicker way to do this?

Please help me out.

regards,

Moljka.