Results 1 to 6 of 6

Math Help - Eigen values & eigen vectors of a 3 by 3..

  1. #1
    Newbie
    Joined
    Sep 2011
    Posts
    10

    Eigen values & eigen vectors of a 3 by 3..

    Hello,

    Suppose one has the matrix A:
    [2 0 -1;
    0 3 0;
    -1 0 2]

    i found eigenvalues: 1 & 3 using the ABC formula. For 1 im getting the eigenvectors:
    q1=1/√(2) & q3=1/√(2) (q2 ending up equal to 0), for 3 im getting: q1=-1/√(2), q2=0, q3=-1/√(2).
    Matlab gives me:

    3 eigen values: 1, 3 & 3.

    And the following, wich i believe are supposed to be the eigen vectors:

    (>> [VA,DD]=eig(A) <---matlab command)

    VA =
    [-0.7071 -0.7071 0;
    0 0 1.0000;
    -0.7071 0.7071 0]

    (1/√(2)=0.7071) it gives 3 eigen vectors with a - sign, while im getting 2 with a - sign.

    -Why is matlab giving 3 eigen values? should a 3 by 3 matrix always have 3 eigenvalues?

    -Why is the last eigen vector 0 1 0 according to matlab? What am i doing wrong?

    I was only taught to compute eigen values/vectors of 2 by 2's.
    Please help me out.

    Kind regards,

    Moljka

    P.S. please forgive me for not displaying the matrices properly in this message.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor
    Prove It's Avatar
    Joined
    Aug 2008
    Posts
    11,832
    Thanks
    1602

    Re: Eigen values & eigen vectors of a 3 by 3..

    Quote Originally Posted by moljka View Post
    Hello,

    Suppose one has the matrix A:
    [2 0 -1;
    0 3 0;
    -1 0 2]

    i found eigenvalues: 1 & 3 using the ABC formula. For 1 im getting the eigenvectors:
    q1=1/√(2) & q3=1/√(2) (q2 ending up equal to 0), for 3 im getting: q1=-1/√(2), q2=0, q3=-1/√(2).
    Matlab gives me:

    3 eigen values: 1, 3 & 3.

    And the following, wich i believe are supposed to be the eigen vectors:

    (>> [VA,DD]=eig(A) <---matlab command)

    VA =
    [-0.7071 -0.7071 0;
    0 0 1.0000;
    -0.7071 0.7071 0]

    (1/√(2)=0.7071) it gives 3 eigen vectors with a - sign, while im getting 2 with a - sign.

    -Why is matlab giving 3 eigen values? should a 3 by 3 matrix always have 3 eigenvalues?

    -Why is the last eigen vector 0 1 0 according to matlab? What am i doing wrong?

    I was only taught to compute eigen values/vectors of 2 by 2's.
    Please help me out.

    Kind regards,

    Moljka

    P.S. please forgive me for not displaying the matrices properly in this message.
    You solve for the eigenvalues by solving \displaystyle \left|\mathbf{A} - \lambda\mathbf{I}\right| = 0 for \displaystyle \lambda...

    \displaystyle \begin{align*} \mathbf{A} &= \left[\begin{matrix}\phantom{-}2&\phantom{-}0&-1\\ \phantom{-}0&\phantom{-}3&\phantom{-}0\\-1&\phantom{-}0&\phantom{-}2\end{matrix}\right] \\ \mathbf{A} - \lambda \mathbf{I} &= \left[\begin{matrix}\phantom{-}2 - \lambda&\phantom{-}0&-1\\ \phantom{-}0&\phantom{-}3 - \lambda &\phantom{-}0\\-1&\phantom{-}0&\phantom{-}2 - \lambda \end{matrix}\right]  \\ \left|\mathbf{A} - \lambda \mathbf{I}\right| &= \left|\begin{matrix}\phantom{-}2 - \lambda&\phantom{-}0&-1\\ \phantom{-}0&\phantom{-}3 - \lambda &\phantom{-}0\\-1&\phantom{-}0&\phantom{-}2 - \lambda \end{matrix}\right| \\ &= (2 - \lambda)\left|\begin{matrix}3-\lambda & 0 \\ 0 & 2-\lambda\end{matrix}\right| - 0\left|\begin{matrix}\phantom{-}0&0\\-1&2-\lambda\end{matrix}\right| + (-1)\left|\begin{matrix}\phantom{-}0&3-\lambda\\ -1 & 0\end{matrix}\right| \\ &= (2-\lambda)(3-\lambda)(2-\lambda) - (3-\lambda) \\ &= (3 - \lambda)\left[(2 - \lambda)^2 - 1\right]   \end{align*}

    And since \displaystyle \left|\mathbf{A} - \lambda\mathbf{I}\right| = 0, that means

    \displaystyle \begin{align*} (3 - \lambda)\left[(2 - \lambda)^2 - 1\right] &= 0 \\ 3 - \lambda = 0 \textrm{ or }(2 - \lambda)^2 - 1 &= 0 \\ \lambda = 3 \textrm{ or }(2 - \lambda)^2 &= 1 \\ \lambda = 3 \textrm{ or } 2 - \lambda &= \pm 1 \\ \lambda = 3 \textrm{ or }\lambda = 1 \textrm{ or }\lambda &= 3 \end{align*}

    So I agree with your eigenvalues, of course making note that \displaystyle \lambda = 3 is a repeated eigenvalue.

    Now for the eigenvectors, we need to solve \displaystyle \mathbf{A}\mathbf{x} = \lambda \mathbf{x}, where \displaystyle \mathbf{x} = \left[\begin{matrix}x_1 \\ x_2 \\ x_3\end{matrix}\right]

    Case 1: \displaystyle \lambda = 1

    \displaystyle \begin{align*}\mathbf{A}\mathbf{x} &= \lambda \mathbf{x} \\ \left[\begin{matrix}\phantom{-}2&\phantom{-}0&-1\\ \phantom{-}0&\phantom{-}3&\phantom{-}0\\-1&\phantom{-}0&\phantom{-}2\end{matrix}\right]\left[\begin{matrix}x_1 \\ x_2 \\ x_3\end{matrix}\right] &= 1 \left[\begin{matrix}x_1 \\ x_2 \\ x_3\end{matrix}\right] \\ \left[\begin{matrix}\phantom{-}2x_1&\phantom{-}0&-x_3\\ \phantom{-}0&\phantom{-}3x_2&\phantom{-}0\\-x_1&\phantom{-}0&\phantom{-}2x_3\end{matrix}\right] &= \left[\begin{matrix}x_1 \\ x_2 \\ x_3\end{matrix}\right] \end{align*}

    Row 1: \displaystyle 2x_1 - x_3 = x_1 \implies x_1 - x_3 = 0 \implies x_1 = x_3

    Row 2: \displaystyle 3x_2 = x_2 \implies 2x_2 = 0 \implies x_2 = 0

    Row 3: \displaystyle -x_1 + 2x_3 = x_3 \implies -x_1 = -x_3 \implies x_1 = x_3

    So setting \displaystyle x_3 = t we find that the corresponding eigenvector to the eigenvalue \displaystyle \lambda = 1 is \displaystyle \left[\begin{matrix}t \\ 0 \\ t\end{matrix}\right], where you can let \displaystyle t be any value you like.


    Case 2: \displaystyle \lambda = 3

    \displaystyle \begin{align*}\mathbf{A}\mathbf{x} &= \lambda \mathbf{x} \\ \left[\begin{matrix}\phantom{-}2&\phantom{-}0&-1\\ \phantom{-}0&\phantom{-}3&\phantom{-}0\\-1&\phantom{-}0&\phantom{-}2\end{matrix}\right]\left[\begin{matrix}x_1 \\ x_2 \\ x_3\end{matrix}\right] &= 3 \left[\begin{matrix}x_1 \\ x_2 \\ x_3\end{matrix}\right] \\ \left[\begin{matrix}\phantom{-}2x_1&\phantom{-}0&-x_3\\ \phantom{-}0&\phantom{-}3x_2&\phantom{-}0\\-x_1&\phantom{-}0&\phantom{-}2x_3\end{matrix}\right] &= \left[\begin{matrix}3x_1 \\ 3x_2 \\ 3x_3\end{matrix}\right] \end{align*}

    Row 1: \displaystyle 2x_1 - x_3 = 3x_1 \implies x_1 = -x_3

    Row 2: \displaystyle 3x_2 = 3x_2 \implies x_2 = s where \displaystyle s can be any value you like.

    Row 3: \displaystyle -x_1 + 2x_3 = 3x_3 \implies x_1 = -x_3

    So set \displaystyle x_3 = r where \displaystyle r can be any value you like, and you find that the eigenvector corresponding to \displaystyle \lambda = 3 is \displaystyle \left[\begin{matrix}-r \\ \phantom{-}s \\ \phantom{-}r\end{matrix}\right]

    It is common practice to have the same number of eigenvectors as eigenvalues, and to give a value to your parameters. This is what MatLab has done.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie
    Joined
    Sep 2011
    Posts
    10

    Re: Eigen values & eigen vectors of a 3 by 3..

    Thank you for your help!

    I see that i missed the (3-λ) part when solving |A-λI|=0 so i only had 3 eigen values. The - signs Matlab gives are different for some reason.

    I must obtain a matrix Q consisting of the eigenvectors. Q must be orthogonal, satisfying: Q*Transpose(Q)=I. (A is symmetric)
    Creating a matrix Q from the column vectors [t 0 t] , [-r 0 r] & Matlab's [0 1 0] gives a matrix Q:
    t -r 0
    0 0 1
    t r 0

    r & t are both: 1/√(2) (||q||=1 euclidean distance condition)

    This satisfies Q=transpose(Q).

    But it leaves me with 1 question, how was i supposed to obtain the last column (eigen?)vector [0 1 0]? Is there some rule that provides a fast solution?
    Thank you for helping me out.

    Regards,

    Moljka
    Follow Math Help Forum on Facebook and Google+

  4. #4
    MHF Contributor

    Joined
    Mar 2011
    From
    Tejas
    Posts
    3,401
    Thanks
    762

    Re: Eigen values & eigen vectors of a 3 by 3..

    we can write (-r,s,r) as r(-1,0,1) + s(0,1,0).

    since (-1,0,1) and (0,1,0) are linearly independent, we are free to choose r and s ....independently (ha!).

    since we desire an orthogonal matrix, we need r(-1,0,1) to be a unit vector, which is how you got r = 1/√2.

    since (0,1,0) is already a unit vector, we can take s = 1.
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Newbie
    Joined
    Sep 2011
    Posts
    10

    Re: Eigen values & eigen vectors of a 3 by 3..

    You "split" (-r s r) to obtain the 3rd column (0 1 0) of Q. Is (0 1 0) considered an eigenvector too? For instance, if i am asked to get the eigen vectors of A do i mention (0 1 0) in a case like this? or do i only mention it when im asked to get the matrix Q?

    Thank you very much for helping me out.

    Regards,

    Moljka
    Follow Math Help Forum on Facebook and Google+

  6. #6
    MHF Contributor

    Joined
    Mar 2011
    From
    Tejas
    Posts
    3,401
    Thanks
    762

    Re: Eigen values & eigen vectors of a 3 by 3..

    an eigenvalue may have more than one eigenvector. in this case both (-1/√2,0,1/√2) and (0,1,0) are eigenvectors corresponding to the (repeated) eigenvalue 3.

    one of the reasons for finding eigenvectors is to find an eigenbasis, that is, an invertible matrix that diagonalizes your original one. as you need all three vectors to obtain this eigenbasis, you should list all 3.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Finding unit eigen values and eigen vectors
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: April 11th 2011, 10:42 AM
  2. what are eigen values and eigen vectors
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: February 28th 2010, 08:14 AM
  3. Eigen Vectors and eigen values!
    Posted in the Advanced Algebra Forum
    Replies: 2
    Last Post: February 11th 2010, 07:29 AM
  4. Find the eigen values and eigen vector
    Posted in the Advanced Algebra Forum
    Replies: 13
    Last Post: November 24th 2009, 08:01 PM
  5. Finding Eigen Value and Eigen Vectors
    Posted in the Advanced Algebra Forum
    Replies: 3
    Last Post: December 26th 2008, 04:43 AM

Search Tags


/mathhelpforum @mathhelpforum