i have to show that \Delta(x) = x \otimes 1 + 1 \otimes x is a universal enveloping algebra homomorphism.

do i have to show that it is a universal enveloping algebra, or just straight up that it is a homomorphism?
this is my working to show that it is a homomorphism:
want to show that \Delta(xy)=\Delta(x)\Delta(y)
\Delta(xy)
= (xy) \otimes 1 + 1 \otimes (xy)
= (x \times 1)(y \otimes 1) + (1 \otimes x)(1 \otimes y)
this is where i'm stuck because i want to show that it equals
\Delta(x)\Delta(y)
= (x \otimes 1 + 1 \otimes x)(y \otimes 1 + 1 \otimes y)
= (x \otimes 1)(y \otimes 1) + (x \otimes 1)(1 \otimes y) + (1 \otimes x)(y \otimes 1) + (1 \otimes x)(1 \otimes y)
by any chance does (x \otimes 1)(1 \otimes y) + (1 \otimes x)(y \otimes 1) = 0? that would mean my working is correct!