# Thread: Polynomials of degree n over Zp

1. ## Polynomials of degree n over Zp

My questions is...

How many polynomials are there of degree n over Zp? Where p is a prime number and n is a positive integer.

I don't fully understand degrees.

Thanks, in advance, for any help.

2. Originally Posted by page929
My questions is...

How many polynomials are there of degree n over Zp? Where p is a prime number and n is a positive integer.

I don't fully understand degrees.

Thanks, in advance, for any help.
How about we start with an easier question! How many polynomials of degree 2 are there over $\mathbb{Z}_{3}$

Hint 1: A degree 2 polynomial has the form

$P(x)=a_2x^2+a_1x+a_0$ where $a_i \in \mathbb{Z}_3$ and we know that $a_2 \not\equiv 0 \text{mod} 3$

Since our finite field has only 3 equivalence classes $[0],[1] \text{ and } [2]$ there are two choices for $a_2$. Since there is no restriction on $a_1$ or $a_0$(they do not affect the degree of the polynomial) they each have three choices. This gives
$2\cdot 3 \cdot 3=18$

See if you can generalize this.

3. Thank you. I believe I have it now.

### for any positive integer n how many polynomials are there of degree n over z2

Click on a term to search for related topics.