Let $\displaystyle A$ be a $\displaystyle n$x$\displaystyle n$ matrix such that $\displaystyle |A|=0$. Identify whether there exists any non-null vector $\displaystyle \tilde{x}$ such that $\displaystyle A\tilde{x}=\tilde{0}$

All I can make out is if we write $\displaystyle A=(\tilde{a_1},\tilde{a_2},.....,\tilde{a_n})$, we have $\displaystyle x_1\tilde{a_1}+x_2\tilde{a_2}+...+x_n\tilde{a_n}=0$. Then I find nowhere to proceed. How to use the fact that $\displaystyle |A|=0$?