For the inner product spaces V (over F) and linear transformations g: V->F, find a vector y such that g(x)=<x,y> for all x in V.

(1) V=R^3, g(a_1,a_2,a_3)=a_1-2a_2+4a_3

(2) V=P2(R) with <f,h>= integral 0 to1 f(t)h(t)dt, g(f)=f(0)+f'(1)

ps: i'm trying my best with the latex, but for some reason when i use it the page gets all distorted.