Let
U=
|-1|
|2 |
|1 |
V=
|3 |
|1 |
|-1|
Find:
|| [1/(||U-V||)](u-v)||
Starters?
Thanks in advance
Why don't you know the basic properties of the norm function?
If $\displaystyle \alpha$ is a scalar and $\displaystyle v$ is a vector then $\displaystyle \left\| {\alpha v} \right\| = \left| \alpha \right|\left\| v \right\|$.
Therefore $\displaystyle \left\| {\dfrac{v}{{\left\| v \right\|}}} \right\|=\left| {\frac{1}{{\left\| v \right\|}}} \right|\left\| v \right\| = \frac{1}
{{\left\| v \right\|}}\left\| v \right\| = 1$