Results 1 to 7 of 7

Math Help - Maximal normal subgroup

  1. #1
    Junior Member
    Joined
    Nov 2010
    Posts
    37

    Maximal normal subgroup

    1) Is S7 X {0} a normal subgroup of S7 X Z7?

    2) Are there any subgroups G such that S7 X {0} < G < S7 X Z7?

    3) If yes to 2), are any of the subgroups G normal?

    The original question was if the group S7 X {0} is a maximal normal subgroup of the product group S7 X Z7, but this is as far as I got in solving it
    Last edited by DanielThrice; November 6th 2010 at 10:14 AM. Reason: No latex
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor Drexel28's Avatar
    Joined
    Nov 2009
    From
    Berkeley, California
    Posts
    4,563
    Thanks
    21
    Quote Originally Posted by DanielThrice View Post
    1) Is S7 X {0} a normal subgroup of S7 X Z7?

    2) Are there any subgroups G such that S7 X {0} < G < S7 X Z7?

    3) If yes to 2), are any of the subgroups G normal?

    The original question was if the group S7 X {0} is a maximal normal subgroup of the product group S7 X Z7, but this is as far as I got in solving it
    1) Yes, note that S_7\times\{0\}=\ker\pi_2 where x,y)\mapsto y" alt="\pi_2:S_7\times\mathbb{Z}_7\to\mathbb{Z}_7x,y)\mapsto y" />

    2) What do you think? Suppose that G\leqslant S_7\times \mathbb{Z}_7 then \pi_2\left(G\right)\leqslant\mathbb{Z}_7 and thus \pi_2\left(G\right)=\{e\},\mathbb{Z}_7. Thus, if S_7\times\{0\}\<G then \pi_1(G)=S_7,\pi_2\left(G\right)=\mathbb{Z}_7. The conclusion follows. Does that actually work? (this is an actual "see if you know the material" question)
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Junior Member
    Joined
    Nov 2010
    Posts
    37
    That doesn't work since it equals Z7 right? Part of the criteria is that the subgroup can't be maximal if it equals the group right? I'm sorry I'm such a novice at this topic
    Follow Math Help Forum on Facebook and Google+

  4. #4
    MHF Contributor Drexel28's Avatar
    Joined
    Nov 2009
    From
    Berkeley, California
    Posts
    4,563
    Thanks
    21
    Quote Originally Posted by DanielThrice View Post
    That doesn't work since it equals Z7 right? Part of the criteria is that the subgroup can't be maximal if it equals the group right? I'm sorry I'm such a novice at this topic
    Right. So if what I did above was technically correct, then I would have proven that there is no maximal subgroup. But, check all my steps and see if they're legit.
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Junior Member
    Joined
    Nov 2010
    Posts
    37
    How do you jump to (Phi) G (I just prefer it better than writing pi 2 out) being the identity element after saying it is in the group G?
    Follow Math Help Forum on Facebook and Google+

  6. #6
    MHF Contributor Drexel28's Avatar
    Joined
    Nov 2009
    From
    Berkeley, California
    Posts
    4,563
    Thanks
    21
    Quote Originally Posted by DanielThrice View Post
    How do you jump to (Phi) G (I just prefer it better than writing pi 2 out) being the identity element after saying it is in the group G?
    What I say is that \pi_2\left(G\right)=\{e\}\text{ or }\mathbb{Z}_7. This follows since \pi_2\left(G\right) is a subgroup of \mathbb{Z}_7 and thus it's order divides 7.
    Follow Math Help Forum on Facebook and Google+

  7. #7
    Junior Member
    Joined
    Nov 2010
    Posts
    37
    Quote Originally Posted by Drexel28 View Post
    What I say is that \pi_2\left(G\right)=\{e\}\text{ or }\mathbb{Z}_7. This follows since \pi_2\left(G\right) is a subgroup of \mathbb{Z}_7 and thus it's order divides 7.
    Alright, so I restarted the problem with your help, and this is what I have.

    I should first note that the answer is technically no right off the bat, because any group is a normal subgroup of itself. Thus, G (S7 x Z7) is the maximal normal subgroup of G, not H (S7 x {0}). I assume that by "maximal normal subgroup," my professor is referring to any normal subgroup that is not contained within any larger normal subgroup of G. If the question wants to know if there is any normal subgroup, besides G itself, that contains H, then we could show that there is not in the following way:

    Assume H is NOT a maximal normal subgroup; then it is contained within another normal subgroup of G, which we shall denote K, where K is not G itself. If K contains every element of H AND some additional element (s, x), where s is in S7 and x in Z7 (and x is not zero), then we shall show K must contain all of G.

    Let s- denote the inverse of s. Since (s-, 0) is in H and therefore in K, then K contains (s-, 0)(s, x) = (e, x). So K contains (e, x), and therefore (e, x)^2 and (e, x)^3 and all other power of (e, x). Since 7 is prime and x is not 0, we will therefore generate (e, 0), (e, 1), (e, 2).... (e, 6) in this way.

    Now let (u, y) be an y element of G. So u is in S7 and y in Z7. We know that (e, y) and (u, 0) are in K, so their product, (u, y) is as well. Thus K contains all of G.

    Thus H is the max normal subgroup?
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 2
    Last Post: March 2nd 2011, 09:07 PM
  2. maximal normal subgroup
    Posted in the Advanced Algebra Forum
    Replies: 2
    Last Post: December 30th 2010, 06:11 AM
  3. prove that Sn is the maximal subgroup of Sn+1.
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: October 11th 2010, 06:32 AM
  4. Maximal normal subgroup
    Posted in the Advanced Algebra Forum
    Replies: 2
    Last Post: March 29th 2009, 08:11 PM
  5. Normal subgroup interset Sylow subgroup
    Posted in the Advanced Algebra Forum
    Replies: 0
    Last Post: May 10th 2008, 01:21 AM

Search Tags


/mathhelpforum @mathhelpforum