The format that this question is presented in is chiefly what has me stumped. Either I'm unfamiliar with it or I just can't remember how to do it in this format.

Compute the matrices for the given linear transformations $\displaystyle T:F^n\rightarrow F^n$ with respect to the standard basis for $\displaystyle F^n$.

a)$\displaystyle T(a_1,...,a_n)=(a_1,...,a_1), (a_1,...,a_n)\in F^n$

b)$\displaystyle T(a_1,...,a_n)=(a_n,a_{n-1},...,a_1), (a_1,...,a_n)\in F^n$

c)$\displaystyle T(a_1,...,a_n)=(a_1+a_2,...,a_{n-1}+a_n,0), (a_1,...,a_n)\in F^n$