I would like to proof the following in the case of groups of finite order:

the number of elements of an arbitrary class of conjugated elements is a divider of the index (G:Z) of the centre of G.

Does anybody know how to proof this?

Peter Mulder

Printable View

- Sep 26th 2010, 12:41 PMPeterMulderQuestion on group theory
I would like to proof the following in the case of groups of finite order:

the number of elements of an arbitrary class of conjugated elements is a divider of the index (G:Z) of the centre of G.

Does anybody know how to proof this?

Peter Mulder - Sep 26th 2010, 01:41 PMtonio
- Sep 27th 2010, 09:14 AMPeterMulder
Thank you Tonio!