If a question asks,

Is the vector

$\displaystyle \mathbf{b}=\begin{pmatrix}-2\\ -6\\ -4\end{pmatrix}\in \mbox{span}(\mathbf{v_1, v_2, v_3, v_4})$ where:

$\displaystyle \mathbf{v_1}=\begin{pmatrix}1\\ 3\\ 0\end{pmatrix}$, $\displaystyle \mathbf{v_2}=\begin{pmatrix}2\\ 2\\ 1\end{pmatrix}$, $\displaystyle \mathbf{v_3}=\begin{pmatrix}-1\\ 0\\ -1\end{pmatrix}$, $\displaystyle \mathbf{v_4}=\begin{pmatrix}1\\ -2\\ 1\end{pmatrix}$

Do we just make it a matrix and solve the matrix? And how would we solve it if we have 4 variables but only 3 equations?

2) Is the set of vectors $\displaystyle \mathbf{v_1}=\begin{pmatrix}1\\ 2\\ 3\end{pmatrix}$, $\displaystyle \mathbf{v_2}=\begin{pmatrix}1\\ 1\\ -1\end{pmatrix}$, $\displaystyle \mathbf{v_3}=\begin{pmatrix}-1\\ 0\\ 5\end{pmatrix}$ a spanning set of $\displaystyle \mathbb{R}^3$?

Do we just make this a matrix with say $\displaystyle \mathbf{x}=\begin{pmatrix}x_1\\ x_2\\ x_3\end{pmatrix}$ as our solution and see if we can solve the matrix?