Results 1 to 15 of 15

Math Help - Vector spaces

  1. #1
    Senior Member
    Joined
    Feb 2008
    Posts
    297

    Vector spaces

    I'm not too sure if this question belongs in this part of the forum.

    Currently, I'm having a lot of trouble understanding this topic.

    Show that the system S with the usual rules for addition and multiplication by a scalar in \mathbb{R}^3, and where

    S=\{\mathbf{x}\in \mathbb{R}^3:2x_1+3x^3_2-4x^2_3=0\}

    is not a vector space by showing that at least one of the vector space axioms is not satisfied.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    A Plied Mathematician
    Joined
    Jun 2010
    From
    CT, USA
    Posts
    6,318
    Thanks
    4
    Awards
    2
    What ideas have you had so far?
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Senior Member
    Joined
    Feb 2008
    Posts
    297
    Quote Originally Posted by Ackbeet View Post
    What ideas have you had so far?
    Well I know the zero vector is included. So it's non-empty. I'm a bit confused when showing closure under addition

    So let \mathbf{v,u}\in \mathbb{R}^3

    2v_1+3v_2^3-4v^2_3=0 and 2u_1+3u_2^3-4u^2_3=0

    (2u_1+3u_2^3-4u^2_3)+(2v_1+3v_2^3-4v^2_3)=0+0

    What should I do next?
    Follow Math Help Forum on Facebook and Google+

  4. #4
    A Plied Mathematician
    Joined
    Jun 2010
    From
    CT, USA
    Posts
    6,318
    Thanks
    4
    Awards
    2
    Well, addition is defined using the usual vector addition in \mathbb{R}^{3}. That is, given two vectors

    \vec{r}_{1}=\begin{bmatrix}x_{1}\\ x_{2}\\ x_{3}\end{bmatrix} and \vec{r}_{2}=\begin{bmatrix}y_{1}\\ y_{2}\\ y_{3}\end{bmatrix}, their sum is

    \vec{r}_{1}+\vec{r}_{2}=\begin{bmatrix}x_{1}+y_{1}  \\ x_{2}+y_{2}\\ x_{3}+y_{3}\end{bmatrix}.

    I would try adding two vectors in S and seeing if the result looks like a vector in S. Where does that lead you?
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Senior Member
    Joined
    Feb 2008
    Posts
    297
    Quote Originally Posted by Ackbeet View Post
    Well, addition is defined using the usual vector addition in \mathbb{R}^{3}. That is, given two vectors

    \vec{r}_{1}=\begin{bmatrix}x_{1}\\ x_{2}\\ x_{3}\end{bmatrix} and \vec{r}_{2}=\begin{bmatrix}y_{1}\\ y_{2}\\ y_{3}\end{bmatrix}, their sum is

    \vec{r}_{1}+\vec{r}_{2}=\begin{bmatrix}x_{1}+y_{1}  \\ x_{2}+y_{2}\\ x_{3}+y_{3}\end{bmatrix}.

    I would try adding two vectors in S and seeing if the result looks like a vector in S. Where does that lead you?
    What do you mean adding two vectors in s. Wouldn't you have to show that the sum of two vectors when substituted into the equation, it does not equal zero.
    Follow Math Help Forum on Facebook and Google+

  6. #6
    A Plied Mathematician
    Joined
    Jun 2010
    From
    CT, USA
    Posts
    6,318
    Thanks
    4
    Awards
    2
    What do you mean adding two vectors in S?
    Hmm. Yeah. I didn't explain that very clearly. Take two different vectors in S. Add them up using the vector addition I defined in Post # 4. See if the result is a vector in S. I would try this with a concrete example, which is all you need anyway if the result is not a vector in S. One counterexample is sufficient. Does this make sense? Can you move forward with this?
    Follow Math Help Forum on Facebook and Google+

  7. #7
    Senior Member
    Joined
    Feb 2008
    Posts
    297
    Sorry, its just that I'm having some trouble getting my head around this. Do you mean finding two vectors which satisfy the equation and actually adding them up?

    For example, (2,0,1)^T and adding it up with another vector and seeing whether it satisfies the equation? Is this a valid way of showing this?
    Follow Math Help Forum on Facebook and Google+

  8. #8
    A Plied Mathematician
    Joined
    Jun 2010
    From
    CT, USA
    Posts
    6,318
    Thanks
    4
    Awards
    2
    Sure. (2,0,1)^T is in the space. Can you come up with another vector in the space (I wouldn't recommend the zero vector, as it won't serve your purposes)?
    Follow Math Help Forum on Facebook and Google+

  9. #9
    Senior Member
    Joined
    Feb 2008
    Posts
    297
    Quote Originally Posted by Ackbeet View Post
    Sure. (2,0,1)^T is in the space. Can you come up with another vector in the space (I wouldn't recommend the zero vector, as it won't serve your purposes)?
    Instead of vector addition, it wouldn't work for scalar multiplication, and therefore it is a not a vector space.
    Follow Math Help Forum on Facebook and Google+

  10. #10
    A Plied Mathematician
    Joined
    Jun 2010
    From
    CT, USA
    Posts
    6,318
    Thanks
    4
    Awards
    2
    I agree, but you'd have to show the work. What do you get?
    Follow Math Help Forum on Facebook and Google+

  11. #11
    Senior Member
    Joined
    Feb 2008
    Posts
    297
    Anther vector would be (-12,2,0)^T and when you add that with (2,0,1)^T you get (-10,2,1)^T it satisfies the set. So isn't it closed under addition.

    For scalar multiplication couldn't we just let \mathbf{x}=(2,0,1)^T and multiply that by a scalar 3. So the new vector would be (6,0,3)^T which does not satisfy the equation. Therefore it is not closed under scalar multiplication
    Follow Math Help Forum on Facebook and Google+

  12. #12
    A Plied Mathematician
    Joined
    Jun 2010
    From
    CT, USA
    Posts
    6,318
    Thanks
    4
    Awards
    2
    It satisfies the set. So isn't it closed under addition.
    Actually, what that means is that you don't have a counterexample there, because that particular addition is closed!

    Your scalar multiplication example works, and is sufficient to show that you don't have a vector space.
    Follow Math Help Forum on Facebook and Google+

  13. #13
    Senior Member
    Joined
    Feb 2008
    Posts
    297
    Quote Originally Posted by Ackbeet View Post
    Actually, what that means is that you don't have a counterexample there, because that particular addition is closed!

    Your scalar multiplication example works, and is sufficient to show that you don't have a vector space.
    Thanks for the help!!
    Follow Math Help Forum on Facebook and Google+

  14. #14
    A Plied Mathematician
    Joined
    Jun 2010
    From
    CT, USA
    Posts
    6,318
    Thanks
    4
    Awards
    2
    You're welcome. Have a good one!
    Follow Math Help Forum on Facebook and Google+

  15. #15
    Banned
    Joined
    Aug 2010
    Posts
    961
    Thanks
    98

    non-planar space.

    It is interesting to consider the question geometrically in a 3d coordinate system. Given x2 and x3, x1 is a point on a non-planar surface through the origin and x is a vector from the origin to a point on the surface. As such, ax and a(x+y) are not on the surface. Mathematically, if x and y satisfy the equation, then x + y, and ax and ay don't, ie, are not in the space as defined, as can be verified by substitution.

    If the equation were linear, ie, the equation of a plane through the origin, then (x + y) and ax and ay would also be on the plane, ie, satisfy the linear equation.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Is the intersection of two vector spaces a vector space?
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: October 10th 2011, 11:55 AM
  2. Vector Spaces
    Posted in the Algebra Forum
    Replies: 4
    Last Post: November 24th 2010, 03:15 AM
  3. Vector Spaces
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: October 9th 2010, 07:51 PM
  4. Vector Spaces
    Posted in the Advanced Algebra Forum
    Replies: 3
    Last Post: February 27th 2010, 10:50 AM
  5. Replies: 3
    Last Post: June 1st 2008, 01:51 PM

Search Tags


/mathhelpforum @mathhelpforum