Let $\displaystyle G=U_{10} \times U_{10}$ , while $\displaystyle U_{10}$ is the group of all invert elements in $\displaystyle Z_{10}$ , and $\displaystyle U_{10}=\{1,3,7,9\}$ .

1. It is true that Inn(G)={Id} only?

2. How can I know if $\displaystyle Aut(G) \simeq Aut(U_{10})\times Aut(U_{10})$?

Thanks