Results 1 to 14 of 14

Math Help - Orthnormal bases

  1. #1
    Newbie
    Joined
    Dec 2009
    Posts
    15

    Orthnormal bases

    Let W=Span ({(i,0,1)}) in C^3. Find the orthonormal bases for W and W-perpendicular (W complement).

    Can someone tell me what to do. I am lost.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    A Plied Mathematician
    Joined
    Jun 2010
    From
    CT, USA
    Posts
    6,318
    Thanks
    5
    Awards
    2
    First step: find bases, not necessarily orthonormal, for those two spaces. Can you do that? What do you get?
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie
    Joined
    Dec 2009
    Posts
    15
    umm...can the standard basis be used for W like (1,0,0), (0,1,0), and (0,0,1)? I'm not sure how to find the bases for W perpendicular.

    if not, then i should use the gram-schmidt process? if yes, then it'll be (i,0,1)?
    Follow Math Help Forum on Facebook and Google+

  4. #4
    A Plied Mathematician
    Joined
    Jun 2010
    From
    CT, USA
    Posts
    6,318
    Thanks
    5
    Awards
    2
    Your candidate basis for W can't be correct, because it has three dimensions, whereas W only has one. I would just use the given vector as a basis. You can then normalize that vector (just divide by its length) to get an orthonormal basis for W. So much for W.

    What about W-perp? W-perp consists of all the vectors that are perpendicular to the vectors in W. That means they'll all be perpendicular to the basis vector you've found in the previous paragraph. How could you characterize all those vectors?
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Newbie
    Joined
    Dec 2009
    Posts
    15
    OK, so when I normalize the vector do i take the result ,and then find the complement of that. For a complement to be perpendicular do we take an arbitrary vector (a,b,c) and find the inner product of our new found vector with the arbitrary vector and it has to equal zero?

    W basis = ((radical 2)/2) (i,0,1)

    So W complement = <W basis, (a,b,c)> =0 so (a,b,c) = (1, a, i) where a is any scalar in C?
    Follow Math Help Forum on Facebook and Google+

  6. #6
    A Plied Mathematician
    Joined
    Jun 2010
    From
    CT, USA
    Posts
    6,318
    Thanks
    5
    Awards
    2
    Correct basis for W, I think. I think you're confusing yourself with respect to W-perp. You need (forget about the normalizing factor for now; it'll cancel out anyway):

    \langle(i,0,1),(a,b,c)\rangle=0, which implies

    ia+c=0.

    So you can see immediately that b can be anything, and that the first and third components must be related with this equation. Then how would you continue?
    Follow Math Help Forum on Facebook and Google+

  7. #7
    Newbie
    Joined
    Dec 2009
    Posts
    15
    ok i put that in a matrix and solved the system of equations.

    [i/radical 2 0 1/radical 2 |0] -> [i 0 1 | 0] -> [1 0 -i | 0 ] so x1 - ix3 =0

    so x1 = ix3, x2= alpha, x3 = beta

    beta (i,0,1) + alpha(0,1,0)
    Follow Math Help Forum on Facebook and Google+

  8. #8
    A Plied Mathematician
    Joined
    Jun 2010
    From
    CT, USA
    Posts
    6,318
    Thanks
    5
    Awards
    2
    I'm not sure I can make out your method of solution, but your final answer makes sense to me. Here's a double-check: have you got two linearly independent vectors (all the vectors in a 3D space orthogonal to one vector should be a space of two dimensions)? Are both of those vectors orthogonal to the basis vector for W? Then you're good to go. I would, however, practice writing your method of solution in a clearer fashion! Communication skills are at least as important in the workplace as technical skills, if not more so.

    Now you should orthonormalize those two vectors as basis vectors. I don't think you'll need to go through the whole Gram-Schmidt procedure, as they are already orthogonal, looks like. What do you get?
    Follow Math Help Forum on Facebook and Google+

  9. #9
    Newbie
    Joined
    Dec 2009
    Posts
    15
    i put the two basis vectors together because dim (w) = 1 = dim (w perp). I got (i,1,1) and then i proceeded to normalize it and i get 1/rad 3 (i,1,1).
    Follow Math Help Forum on Facebook and Google+

  10. #10
    A Plied Mathematician
    Joined
    Jun 2010
    From
    CT, USA
    Posts
    6,318
    Thanks
    5
    Awards
    2
    Your post #9 makes no sense. You had beta (i,0,1) + alpha(0,1,0) for the basis of W-perp. That makes sense. It has dimension two. Don't second-guess yourself!
    Follow Math Help Forum on Facebook and Google+

  11. #11
    Newbie
    Joined
    Dec 2009
    Posts
    15
    Ooo ok.

    so normalizing (i,0,1) = 1/rad 2 (i,0,1)
    and normalizing (0,1,0) = (0,1,0)
    Follow Math Help Forum on Facebook and Google+

  12. #12
    A Plied Mathematician
    Joined
    Jun 2010
    From
    CT, USA
    Posts
    6,318
    Thanks
    5
    Awards
    2
    Right. I think you're done!
    Follow Math Help Forum on Facebook and Google+

  13. #13
    Newbie
    Joined
    Dec 2009
    Posts
    15
    ooooo~ thank you so much for your quick reply!!!! ^_^
    Follow Math Help Forum on Facebook and Google+

  14. #14
    A Plied Mathematician
    Joined
    Jun 2010
    From
    CT, USA
    Posts
    6,318
    Thanks
    5
    Awards
    2
    You're very welcome. Have a good one!
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. find a vector in an orthnormal basis
    Posted in the Advanced Algebra Forum
    Replies: 5
    Last Post: September 24th 2011, 03:20 PM
  2. Bases
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: July 20th 2010, 11:45 PM
  3. Bases
    Posted in the Algebra Forum
    Replies: 2
    Last Post: August 17th 2008, 03:53 PM
  4. Bases other than e... help?
    Posted in the Calculus Forum
    Replies: 12
    Last Post: August 31st 2007, 07:48 AM
  5. Bases
    Posted in the Math Topics Forum
    Replies: 2
    Last Post: April 21st 2005, 06:35 AM

Search Tags


/mathhelpforum @mathhelpforum