Let $\displaystyle R$ be a commutative ring with identity. Let $\displaystyle S$ be the set of all non-unit elements of $\displaystyle R$ . If $\displaystyle S-J(R)$ ( $\displaystyle J(R)$ is the jacobson radical of $\displaystyle R$ ) is finite , then prove that $\displaystyle R \cong R_1\times R_2\times ...\times R_k$ for some finite local rings $\displaystyle R_i$ and every non-unit is a zero-divisor .