Hi there.
You might try thinking about Lagrange's Theorem, which states that if is a finite group, the order of any subgroup must divide the order of . Can you see how to use this to show that every group of prime order is cyclic?
I'm trying to dust off the cobb webs by studying some basic Group Theory. Can someone provide a proof that a Group of order 5, or any prime for that matter, must be a cyclic Abelian group, and that there can be only one such group...
I can easily find the multiplication table for the Group, but I don't see how to prove the statement that it is the only such group.
Any insights would be much appreciated..
Thanks
I see that a group of prime order cannot have any subgroups (other than E), but how does that lead to the non-existance of groups of a given prime order, other than the cyclic, Abelian group? For example, I can create more than one multiplication table for which obeys the rule that no element appear more than once in any row or column. However, I can show the table for the non-Abelian violates the associative property, and thus is not a proper group. But such a brute force approach is not practical for primes of higher order.
I guess the cobb webs have pretty high tensile strength!
Am I heading in the right direction:
If the order of any element of the group , where is the order of the group , is such that , and by Legrange's theorem must be divisible into , then for prime, it must be true that is either 1 or .
Since every element of the Group must have an order , and since is restricted to either 1 or when is prime, all elements (except E) must have the same order -- i.e. .
Now, need to show that only one such Group can satisfy this condition.
??
If g is not the identity, and it has order p, then should generate all the elements of the group. Thus, I believe I can say three things about the subgroup:
1) The subgroup generated by g in this way is actually the entire group.
2) The group formed in this way, i.e. through successive powers of an element, is cyclic
3) The group is Abelian.