Results 1 to 1 of 1

Math Help - Finding Principal Ideal

  1. #1
    Junior Member
    Joined
    Aug 2009
    Posts
    34

    Finding Principal Ideal

    Let R and C be the field of real numbers and of complex numbers, respectively, and \theta:R[X]->C be a ring homomorphism defined by \theta(f)=f(i). I want to show that the kernel is the ideal generated by x^2 + 1. I can prove that there is no linear polynomial in the kernel and that x^2 + 1 is the only quadratic in the kernel (up to associates of course), but I don't know how to show the kernel is actually <x^2 + 1>R[X].
    I have to show that for any other polynomial f in the kernel, the quadratic divides f, but how? I know that R[X] is a PID so I'm sure it's of that form. I've tried using division with remainder so that for f in the kernel f(x) = (x^2 + 1)g(x) + r(x). This gives that r(i)=0 and so r is in the kernel. But deg(r) < deg(x^2 + 1) or r=0. Since no linear or constant polynomial is in the kernel, then r=0. But the problem is: am I allowed to use division with remainder? (I'm not sure in what domain I can start using division with remainder)
    Any help is appreciated

    EDIT: apparently in my book it says the division algorithm can be used in Euclidean Domains (with Euclidean function deg(f)), but wikipedia says it can be done in PIDs already. Can someone clarify? I know that for K a field K[X] is Euclidean, so this already solves my problem.
    Last edited by bleys; May 17th 2010 at 07:24 AM.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Principal Ideal
    Posted in the Advanced Algebra Forum
    Replies: 4
    Last Post: October 10th 2011, 03:48 PM
  2. Principal Ideal
    Posted in the Advanced Algebra Forum
    Replies: 3
    Last Post: June 13th 2011, 12:12 AM
  3. Not Principal Ideal
    Posted in the Advanced Algebra Forum
    Replies: 6
    Last Post: April 1st 2011, 05:17 AM
  4. Principal ideal and PID
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: October 31st 2009, 11:59 AM
  5. Principal Ideal
    Posted in the Advanced Algebra Forum
    Replies: 2
    Last Post: November 15th 2005, 08:49 AM

Search Tags


/mathhelpforum @mathhelpforum