Results 1 to 4 of 4

Math Help - Vector space of all 2x2 matrices

  1. #1
    Newbie
    Joined
    May 2010
    Posts
    5

    Vector space of all 2x2 matrices

    Hi,

    Consider the vector space M22 of all 2 2 matrices with real number entries. Let T be the linear transformation T : M22 > M22 given by:

    T( \begin{bmatrix} a & b \\ c & d \end{bmatrix}) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} b & b \\ d & d \end{bmatrix}

    (a) Write down the standard basis S for M22 and write down the dimension of M22.
    I found that S={(1,0),(0,1)} and the dimension of M2x2 is 4 (2x2=4)
    (b) Write down the image under T of each element of S and hence write down the matrix of T with respect to S.
    Not sure?
    (c) Find a basis (consisting of 2 2 matrices) for the image of T and hence write down the rank and nullity of T.
    Not sure?
    (d) Find a basis (consisting of 2 2 matrices) for the nullspace of T.

    Not sure?


    Please help!
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor
    Joined
    Mar 2010
    From
    Florida
    Posts
    3,093
    Thanks
    5
    Quote Originally Posted by Pixel View Post
    Hi,

    Consider the vector space M22 of all 2 2 matrices with real number entries. Let T be the linear transformation T : M22 > M22 given by:

    T( \begin{bmatrix} a & b \\ c & d \end{bmatrix}) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} b & b \\ d & d \end{bmatrix}

    (a) Write down the standard basis S for M22 and write down the dimension of M22.
    I found that S={(1,0),(0,1)} and the dimension of M2x2 is 4 (2x2=4)
    (b) Write down the image under T of each element of S and hence write down the matrix of T with respect to S.
    Not sure?
    (c) Find a basis (consisting of 2 2 matrices) for the image of T and hence write down the rank and nullity of T.
    Not sure?
    (d) Find a basis (consisting of 2 2 matrices) for the nullspace of T.

    Not sure?


    Please help!
    The column vectors of the transformation are lin dep.; therefore, the rank will be 1. Dim=rank+nullity.
    Basis
    \begin{bmatrix}<br />
1 & 1\\ <br />
0 & 0<br />
\end{bmatrix},\begin{bmatrix}<br />
0 & 0\\ <br />
1 & 1<br />
\end{bmatrix}
    Follow Math Help Forum on Facebook and Google+

  3. #3
    MHF Contributor

    Joined
    Apr 2005
    Posts
    16,421
    Thanks
    1857
    Quote Originally Posted by Pixel View Post
    Hi,

    Consider the vector space M22 of all 2 2 matrices with real number entries. Let T be the linear transformation T : M22 > M22 given by:

    T( \begin{bmatrix} a & b \\ c & d \end{bmatrix}) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} b & b \\ d & d \end{bmatrix}

    (a) Write down the standard basis S for M22 and write down the dimension of M22.
    I found that S={(1,0),(0,1)} and the dimension of M2x2 is 4 (2x2=4)
    Did you think about this? If your basis contained only a single matrix, then the dimension would be 1, not 4. The "standard basis" for M2x2 is \begin{bmatrix}1 & 0 \\ 0 & 0\end{bmatrix}, \begin{bmatrix}0 & 1 \\ 0 & 0\end{bmatrix}, \begin{bmatrix}0 & 0 \\ 1 & 0\end{bmatrix}, and \begin{bmatrix}0 & 0 \\ 0 & 1\end{bmatrix}. That should have been one of the first things you learned.

    (b) Write down the image under T of each element of S and hence write down the matrix of T with respect to S.
    Not sure?

    T\begin{bmatrix}1 & 0 \\ 0 & 0\end{bmatrix}= \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix} which is just the sum of 0 times each of the basis matrices. The first column is of the matrix representation of T is all 0s, \begin{bmatrix}0 \\ 0 \\ 0 \\ 0\end{bmatrix}.

    T\begin{bmatrix}0 & 1 \\ 0 & 0\end{bmatrix}= \begin{bmatrix}1 & 1 \\ 0 & 0\end{bmatrix} = \begin{bmatrix}1 & 0 \\ 0 & 0\end{bmatrix}+ \begin{bmatrix}0 & 1 \\ 0 & 0\end{bmatrix} so the second column is \begin{bmatrix}1 \\ 1 \\ 0 \\ 0\end{bmatrix}.
    Now, try the next two columns.

    (c) Find a basis (consisting of 2 2 matrices) for the image of T and hence write down the rank and nullity of T.
    Not sure?

    Any vector in the image of T can be written as T\begin{bmatrix}a & b \\ c & d\end{bmatrix}= \begin{bmatrix}b & b \\ d & c\end{bmatrix} = \begin{bmatrix}b & b \\ 0 & 0\end{bmatrix}+ \begin{bmatrix}0 & 0 \\ d & d\end{bmatrix} = b\begin{bmatrix}1 & 1 \\ 0 & 0\end{bmatrix}+ d\begin{bmatrix} 0 & 0 \\ 1 & 1\end{bmatrix}. Get the point?

    (d) Find a basis (consisting of 2 2 matrices) for the nullspace of T.
    Not sure?
    Any T\begin{bmatrix}a & b \\ c & d\end{bmatrix}= \begin{bmatrix} b & b \\ d & d\end{bmatrix} will be 0 (and so the matrix \begin{bmatrix} a & b \\ c & d\end{bmatrix} in the null space of T) if and only if b= 0 and d= 0. That leaves \begin{bmatrix}a & 0 \\ c & 0\end{bmatrix}= a\begin{bmatrix}1 & 0 \\ 0 & 0\end{bmatrix}+ c\begin{bmatrix}0 & 0 \\ 1 & 0\end{bmatrix}


    Please help!
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Newbie
    Joined
    May 2010
    Posts
    1
    So for part b you just multiply the 4 standard bases matrices by the transition matrix and then put the resulting matrices in terms of the standard basis? and these will be columns of a 4x4 matrix?
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Dual Space of a Vector Space Question
    Posted in the Differential Geometry Forum
    Replies: 2
    Last Post: April 16th 2011, 04:02 AM
  2. Replies: 2
    Last Post: April 1st 2011, 03:40 AM
  3. Banach space with infinite vector space basis?
    Posted in the Differential Geometry Forum
    Replies: 2
    Last Post: March 24th 2011, 07:23 PM
  4. Replies: 15
    Last Post: July 23rd 2010, 12:46 PM
  5. Isomorphism beetwenn vector space and sub space
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: November 30th 2008, 11:05 AM

Search Tags


/mathhelpforum @mathhelpforum