The two columns are the same. That means the matrix is not invertible (determinant is 0) and so one of the eigenvaluesmustbe 0. The determinant of a matrixisthe product of its eigenvalues. If the determinant is 0, then at least one of the eigenvalues must be 0.

Another way of looking at it is that the "column space" is spanned by <1, 3> and so is one-dimensional. That means that the nullspace has dimension 2- 1= 1> 0. There exist non-zero vectors v such that Av= 0= 0v so, again, 0 is an eigenvalue.