Results 1 to 3 of 3

Math Help - characteristic polynomial

  1. #1
    Junior Member piglet's Avatar
    Joined
    Feb 2010
    Posts
    60

    characteristic polynomial

    What's the easiest way to calculate the characteristic polynomial of a 3x3 matrix?

    I'm aware this is the formula: det(A-lambda(I)), dont really know how to apply it though.

    Say matrix was: 1 2 1
    1 3 1
    1 2 1


    i dont want the solution, just the actual method.. or if someone could run through step by step it would be great
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor
    Prove It's Avatar
    Joined
    Aug 2008
    Posts
    11,547
    Thanks
    1418
    Suppose that

    A\mathbf{x} = \lambda \mathbf{x}

    for some matrix A, some vector \mathbf{x} and some scalar \lambda.

    Then \mathbf{x} is called an eigenvector and \lambda is the corresponding Eigenvalue.

    The thing is, how do you find \lambda and \mathbf{x}?


    Notice if A\mathbf{x} = \lambda \mathbf{x}

    It might make sense to move everything to one side.

    Unfortunately A is a matrix and \lambda is a scalar. So you instead write

    A\mathbf{x} = \lambda I \mathbf{x}.

    Now that the matrices have the same dimensions, you can subtract them


    A\mathbf{x} - \lambda I \mathbf{x} = \mathbf{0}

    (A - \lambda I)\mathbf{x} = \mathbf{0}.


    Clearly, this has a trivial solution if \mathbf{x} = \left[\begin{matrix}0 \\ 0 \\ \vdots \\ 0\end{matrix}\right].

    For a nontrivial solution

    A - \lambda I = \mathbf{0}.

    Since this is a zero matrix, it is singular.

    So |A - \lambda I| = 0.


    We can use this information to find \lambda.



    In your case:

    A = \left[\begin{matrix}1 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 1\end{matrix}\right].


    You need to work out

    |A - \lambda I|.


    A - \lambda I = \left[\begin{matrix}1 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2  & 1\end{matrix}\right] - \left[\begin{matrix}\lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda\end{matrix}\right]

     = \left[\begin{matrix}1 - \lambda & 2 & 1 \\ 1 & 3 - \lambda & 1 \\ 1 & 2 & 1 - \lambda\end{matrix}\right]


    Therefore |A - \lambda I| = \left|\begin{matrix}1 - \lambda & 2 & 1 \\ 1 & 3 - \lambda  & 1 \\ 1 & 2 & 1 - \lambda\end{matrix}\right|

     = (1 - \lambda)\left|\begin{matrix}3 - \lambda & 1 \\ 2 & 1 - \lambda\end{matrix}\right| - 2\left|\begin{matrix}1 & 1 \\ 1 & 1 - \lambda\end{matrix}\right| + 1\left|\begin{matrix}1 & 3-\lambda \\ 1 & 2\end{matrix}\right|

     = (1 - \lambda)[(3 - \lambda)(1 - \lambda) - 1\cdot 2] - 2[1(1 - \lambda) - 1\cdot 1] + 1[1 \cdot 2 - (3 - \lambda)1]

     = (1 - \lambda)(3 - 3\lambda - \lambda + \lambda^2 - 2) - 2(1 - \lambda - 1) + 2 - 3 + \lambda

     = (1 - \lambda)(1 - 4\lambda + \lambda^2) + 2\lambda -1 + \lambda

     = 1 - 4\lambda + \lambda^2 - \lambda + 4\lambda^2 - \lambda^3 + 3\lambda - 1

     = -\lambda^3 + 5\lambda^2 - 2\lambda.


    Since this determinant is zero...

    -\lambda^3 + 5\lambda^2 - 2\lambda = 0

    -\lambda(\lambda^2 - 5\lambda + 2) = 0


    You should be able to solve for \lambda now.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Junior Member piglet's Avatar
    Joined
    Feb 2010
    Posts
    60
    thanks so much, especially for the theory and worked through problem
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Characteristic Polynomial
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: November 28th 2011, 06:01 AM
  2. Characteristic Polynomial
    Posted in the Advanced Algebra Forum
    Replies: 3
    Last Post: April 21st 2010, 02:40 PM
  3. Replies: 1
    Last Post: December 15th 2009, 07:26 AM
  4. characteristic polynomial
    Posted in the Discrete Math Forum
    Replies: 0
    Last Post: November 9th 2008, 11:09 AM
  5. Characteristic polynomial
    Posted in the Advanced Algebra Forum
    Replies: 4
    Last Post: November 13th 2006, 07:35 AM

Search Tags


/mathhelpforum @mathhelpforum