Let f(x),g(x) belong to R[x] with f(x)=g(x)(mod x)...what can you say about the graphs of y=f(x) and y=g(x)? Well, this says x divides f(x)-g(x)..so one is an odd power and one an even...is there something more to say ?
Let f(x),g(x) belong to R[x] with f(x)=g(x)(mod x)...what can you say about the graphs of y=f(x) and y=g(x)? Well, this says x divides f(x)-g(x)..so one is an odd power and one an even...is there something more to say ?