a,b,c>0 . Prove the inequality :
1/[a.\sqrt{a+b}] + 1/[b.\sqrt{b+c}]+1/[c.\sqrt{c+a}] >= 3/(\sqrt{2abc}
$\displaystyle \frac{1}{a\sqrt{a+b}} + \frac{1}{b\sqrt{b+c}} + \frac{1}{c\sqrt{c+a}} \geq \frac{3}{\sqrt{2abc}}$
a,b,c>0 . Prove the inequality :
1/[a.\sqrt{a+b}] + 1/[b.\sqrt{b+c}]+1/[c.\sqrt{c+a}] >= 3/(\sqrt{2abc}
$\displaystyle \frac{1}{a\sqrt{a+b}} + \frac{1}{b\sqrt{b+c}} + \frac{1}{c\sqrt{c+a}} \geq \frac{3}{\sqrt{2abc}}$