Results 1 to 4 of 4

Math Help - Prove that LHS=RHS using ONLY properties of Det.

  1. #1
    Newbie
    Joined
    Feb 2010
    Posts
    2

    Prove that LHS=RHS using ONLY properties of Det.

    Q) Without directly expanding the det., but using only the well-known properties, prove that:

    __________________________________________________ ________

    Tried solving many times but couldn't find a proper method/approach. Keep getting stuck every time...

    Please help guys... Thanks in advance!
    Attached Thumbnails Attached Thumbnails Prove that LHS=RHS using ONLY properties of Det.-solve.png  
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor
    Opalg's Avatar
    Joined
    Aug 2007
    From
    Leeds, UK
    Posts
    4,041
    Thanks
    7
    Let A denote the matrix \begin{bmatrix}-bc&b^2+bc&c^2+bc\\ a^2+ac&-ac&c^2+ac\\ a^2+ab&b^2+ab&-ab\end{bmatrix}. The eigenvalues of A are the roots of the equation \begin{vmatrix}-bc-\lambda&b^2+bc&c^2+bc\\ a^2+ac&-ac-\lambda&c^2+ac\\ a^2+ab&b^2+ab&-ab-\lambda\end{vmatrix} = 0. If we try putting \lambda = -(ab+bc+ca), then that equation becomes \begin{vmatrix}a(b+c)&b(b+c)&c(b+c)\\ a(a+c)&b(a+c)&c(a+c)\\ a(a+b)&b(a+b)&c(a+b)\end{vmatrix} = 0. The vector (x,y,z) will be an eigenvector for \lambda if \begin{bmatrix}a(b+c)&b(b+c)&c(b+c)\\ a(a+c)&b(a+c)&c(a+c)\\ a(a+b)&b(a+b)&c(a+b)\end{bmatrix}\begin{bmatrix}x\  \y\\z\end{bmatrix} = \begin{bmatrix}0\\0\\0\end{bmatrix}. But that system of equations reduces to ax+by+cz=0, which has two linearly independent solutions. Therefore \lambda = -(ab+bc+ca) is indeed an eigenvalue of A, with multiplicity at least 2. But the sum of the three eigenvalues of A is equal to the trace of A, which is -(ab+bc+ca). Therefore the third eigenvalue must be ab+bc+ca. Finally, the determinant of A is the product of its eigenvalues, namely (ab+bc+ca)^3.

    I don't know if that counts as a proof "using ONLY properties of Det.", but at least it didn't involve expanding the determinant.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie
    Joined
    Feb 2010
    Posts
    2

    Thumbs up

    Thanks for reply Opalg, much appreciated!... Using eigenvalues will work to. Main thing, was not to use expansion.

    BTW "properties of determinants" mean manipulation of the det. by basic math functions (+-/*), changing of rows/columns/etc...

    Yeah! got it, after a fresh start...

    <br />
L.H.S.=<br />
\begin{bmatrix}<br />
-bc&b^2+bc&c^2+bc\\<br />
 a^2+ac&-ac&c^2+ac\\<br />
 a^2+ab&b^2+ab&-ab\\<br />
\end{bmatrix}<br />

    <br />
=1/abc<br />
\begin{bmatrix}<br />
-abc&ab^2+abc&ac^2+abc\\<br />
 a^2b+abc&-abc&bc^2+abc\\<br />
 a^2c+abc&b^2c+abc&-abc\\<br />
\end{bmatrix}<br />

    <br />
=abc/abc<br />
\begin{bmatrix}<br />
-bc&ab+ac&ac+ab\\<br />
 ab+bc&-ac&bc+ab\\<br />
 ac+bc&bc+ac&-ab\\<br />
\end{bmatrix}<br />

    <br />
=<br />
\begin{bmatrix}<br />
-bc+ab+bc+ac+bc&ab+ac-ac+bc+ac&ac+ab+bc+ab-ab\\<br />
 ab+bc&-ac&bc+ab\\<br />
 ac+bc&bc+ac&-ab\\<br />
\end{bmatrix}<br />

    <br />
=<br />
\begin{bmatrix}<br />
ab+bc+ca&ab+bc+ca&ab+bc+ca\\<br />
ab+bc&-ac&bc+ab\\<br />
 ac+bc&bc+ac&-ab\\<br />
\end{bmatrix}<br />

    <br />
=<br />
(ab+bc+ca)<br />
\begin{bmatrix}<br />
1&1&1\\<br />
ab+bc&-ac&bc+ab\\<br />
 ac+bc&bc+ac&-ab\\<br />
\end{bmatrix}<br />

    <br />
=<br />
(ab+bc+ca)<br />
\begin{bmatrix}<br />
0&1&1\\<br />
0&-ac&bc+ab\\<br />
 ac+bc+ca&bc+ac&-ab\\<br />
\end{bmatrix}<br />

    <br />
=<br />
(ab+bc+ca)^2<br />
\begin{bmatrix}<br />
1&1\\<br />
-ac&bc+ab\\<br />
 \end{bmatrix}<br />

    <br />
=<br />
(ab+bc+ca)^2<br />
\begin{bmatrix}<br />
1&0\\<br />
-ac&ab+bc+ca\\<br />
 \end{bmatrix}<br />

    <br />
=<br />
 (ab+bc+ca)^3<br />


    <br />
 =R.H.S.   [Proved]<br />
    Follow Math Help Forum on Facebook and Google+

  4. #4
    MHF Contributor
    Opalg's Avatar
    Joined
    Aug 2007
    From
    Leeds, UK
    Posts
    4,041
    Thanks
    7
    Quote Originally Posted by romit View Post
    Yeah! got it, after a fresh start...
    Nice proof!
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Zero properties
    Posted in the Algebra Forum
    Replies: 6
    Last Post: October 2nd 2011, 01:17 PM
  2. Replies: 1
    Last Post: March 29th 2010, 07:15 PM
  3. sup properties
    Posted in the Differential Geometry Forum
    Replies: 0
    Last Post: September 24th 2009, 03:17 PM
  4. About properties of set R
    Posted in the Differential Geometry Forum
    Replies: 10
    Last Post: July 9th 2009, 11:37 AM
  5. Need help with properties
    Posted in the Algebra Forum
    Replies: 0
    Last Post: September 1st 2008, 11:30 AM

Search Tags


/mathhelpforum @mathhelpforum