Results 1 to 2 of 2

Math Help - Simultaneous equation from relativity

  1. #1
    Member
    Joined
    May 2008
    From
    Melbourne Australia
    Posts
    208
    Thanks
    20

    Simultaneous equation from relativity

    I need to solve the equations:

    ct_1=l+\frac 12 \alpha t_1^2

    ct_2=l+\frac 12 \alpha t_1^2-\frac 12 \alpha (t_1+t_2)^2


    First I try adding and subtracting the two equations to get:
    c(t_1+t_2)=2l+\alpha t_1^2-\frac 12 \alpha (t_1+t_2)^2

    c(t_1-t_2)=\frac 12 \alpha (t_1+t_2)^2


    But I can make no real progress from there.

    Now the context of the question means that:

    \alpha << 1, l << 1 and I am more than happy to make a few aproximations. I expect the binomial aproximation may be useful.

    The required solution is:

    t_1+t_2 = \frac{2l}c (1+\frac {\alpha l}2)

    I have posted the whole question on Physics help forum at:
    http://www.physicshelpforum.com/phys...lleration.html
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Member
    Joined
    May 2008
    From
    Melbourne Australia
    Posts
    208
    Thanks
    20
    Finally solved it myself.

    eqn1 ct_1=l+\frac 12 \alpha t_1^2

    eqn2 ct_2=l+\frac 12 \alpha t_1^2-\frac 12 \alpha (t_1+t_2)^2

    eqn3 c(t_1+t_2)=2l+\alpha t_1^2-\frac 12 \alpha (t_1+t_2)^2

    Let
    T=t_1+t_2

    From eqn1:
    t_1=\frac{c-\sqrt{c^2-2 \alpha l}}{\alpha}=\frac{c-c \sqrt{1-\frac {2 \alpha l}{c^2}}}{\alpha}

    t_1 \approx \frac {c-c+\frac {\alpha l}{c}+\frac{\alpha^2l^2}{2c^2}}{\alpha}=\frac lc+\frac{\alpha l^2}{2c^2}
    So
    t_1^2 \approx \frac {l^2}{c^2}+\frac{\alpha l^3}{c^3}

    now substituting into eqn3

    cT \approx 2l-\frac 12 \alpha T^2+ \alpha t_1^2=2l-\frac 12 \alpha T^2+\frac {\alpha l^2}{c^2}+\frac{\alpha^2 l^3}{c^3}
    Rearanging
    cT+\frac 12 \alpha T^2 \approx 2l+\frac {\alpha l^2}{c^2}+\frac{\alpha^2 l^3}{c^3}

    Dumping the smallest terms:

    cT \approx 2l+\frac {\alpha l^2}{c^2}

    And finally

    T \approx \frac {2l}{c}(1+\frac {\alpha l}{2c^2})
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Simultaneous Equation
    Posted in the Algebra Forum
    Replies: 3
    Last Post: November 9th 2011, 03:42 PM
  2. Simultaneous equation...
    Posted in the Algebra Forum
    Replies: 7
    Last Post: December 29th 2008, 12:23 PM
  3. Simultaneous Equation [C1]
    Posted in the Pre-Calculus Forum
    Replies: 3
    Last Post: October 14th 2008, 11:45 AM
  4. Simultaneous Equation [C1]
    Posted in the Algebra Forum
    Replies: 1
    Last Post: October 14th 2008, 11:17 AM
  5. Simultaneous Equation help!
    Posted in the Algebra Forum
    Replies: 5
    Last Post: September 20th 2007, 07:47 AM

Search Tags


/mathhelpforum @mathhelpforum