Hi guys,

I'm trying to understand an example of a commutative UFD that is not a PID.

Let k be a field and consider the ring of polynomials over k, k[x,y]. Assuming that this is a UFD, I'm trying to show that this is not a PID.

It was shown to me a while ago before I had any 'further' knowledge and looking back at my notes now, I have

"xR+yR is not a principal ideal and not free..." (Worried)