Results 1 to 4 of 4

Thread: Eigen value , eigen vector

  1. #1
    Banned
    Joined
    Jan 2010
    Posts
    21

    Eigen value , eigen vector

    Find the eigen value and eigen vector of $\displaystyle \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$

    Solution :

    $\displaystyle |A- \lambda I |$ = $\displaystyle \begin{bmatrix} (1 - \lambda) & 2 & 3 \\ 3 & (1 - \lambda) & 0 \\ -2 & 0 & (1 - \lambda) \end{bmatrix}$ =

    $\displaystyle (1-\lambda)[(1 - \lambda)(1-\lambda) - 0]-2[3(1 - \lambda)-0]+3[0-(-2)(1 - \lambda)]$
    = $\displaystyle (1-\lambda)(1 - 2 \lambda + 2)- 6 + 6 \lambda+ 6 - 6 \lambda$
    $\displaystyle = 1 -2\lambda+\lambda^2-\lambda+2\lambda^2-\lambda^3$
    $\displaystyle =(1-\lambda)(1-2\lambda+\lambda^2)$
    $\displaystyle (1-\lambda)(\lambda-1)(\lambda-1)$

    Eigen value $\displaystyle \lambda =1 $

    putting $\displaystyle \lambda=1$ in the matrix eq

    $\displaystyle \begin{bmatrix} 0 & 2 & 3 \\ 3 & 0 & 0 \\ -2 & 0 & 0 \end{bmatrix}$ . $\displaystyle \begin{bmatrix}x \\ y \\z \end{bmatrix}$=$\displaystyle \begin{bmatrix} 0 \\ 0 \\0 \end{bmatrix}$ $\displaystyle \Rightarrow$ $\displaystyle \begin{cases}2y + 3z = 0 \\ 3x = 0 \\ -2x = 0 \end{cases}$

    Stuck here !!!!!!!
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Senior Member Shanks's Avatar
    Joined
    Nov 2009
    From
    BeiJing
    Posts
    374
    $\displaystyle x=0,y=c,z=\frac{-2c}{3}$
    the solution set is a subspace generated by $\displaystyle (0,1,\frac{-2}{3})$.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Banned
    Joined
    Jan 2010
    Posts
    21
    thanks
    Follow Math Help Forum on Facebook and Google+

  4. #4
    MHF Contributor

    Joined
    Apr 2005
    Posts
    19,777
    Thanks
    3028
    Quote Originally Posted by flintstone View Post
    Find the eigen value and eigen vector of $\displaystyle \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$

    Solution :

    $\displaystyle |A- \lambda I |$ = $\displaystyle \begin{bmatrix} (1 - \lambda) & 2 & 3 \\ 3 & (1 - \lambda) & 0 \\ -2 & 0 & (1 - \lambda) \end{bmatrix}$ =

    $\displaystyle (1-\lambda)[(1 - \lambda)(1-\lambda) - 0]-2[3(1 - \lambda)-0]+3[0-(-2)(1 - \lambda)]$
    = $\displaystyle (1-\lambda)(1 - 2 \lambda + 2)- 6 + 6 \lambda+ 6 - 6 \lambda$
    $\displaystyle = 1 -2\lambda+\lambda^2-\lambda+2\lambda^2-\lambda^3$
    $\displaystyle =(1-\lambda)(1-2\lambda+\lambda^2)$
    $\displaystyle (1-\lambda)(\lambda-1)(\lambda-1)$

    Eigen value $\displaystyle \lambda =1 $

    putting $\displaystyle \lambda=1$ in the matrix eq

    $\displaystyle \begin{bmatrix} 0 & 2 & 3 \\ 3 & 0 & 0 \\ -2 & 0 & 0 \end{bmatrix}$ . $\displaystyle \begin{bmatrix}x \\ y \\z \end{bmatrix}$=$\displaystyle \begin{bmatrix} 0 \\ 0 \\0 \end{bmatrix}$ $\displaystyle \Rightarrow$ $\displaystyle \begin{cases}2y + 3z = 0 \\ 3x = 0 \\ -2x = 0 \end{cases}$

    Stuck here !!!!!!!
    Both second and third equations just tell you that x= 0. The first equation tells you that 2y= -3z so y= -(3/2)z. Any eigenvector is of the form <0, -(3/2)z, z>= z<0, -3/2, 1>. If z= 2, that is <0, -3 , 2> so the space of eigenvectors of this matrix is spanned by that single vector (which is, of course, a multiple of the one Shanks gave).
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Eigen values & eigen vectors of a 3 by 3..
    Posted in the Advanced Algebra Forum
    Replies: 5
    Last Post: Oct 9th 2011, 07:35 AM
  2. Finding unit eigen values and eigen vectors
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: Apr 11th 2011, 09:42 AM
  3. Replies: 5
    Last Post: Apr 5th 2010, 02:41 AM
  4. what are eigen values and eigen vectors
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: Feb 28th 2010, 07:14 AM
  5. Find the eigen values and eigen vector
    Posted in the Advanced Algebra Forum
    Replies: 13
    Last Post: Nov 24th 2009, 07:01 PM

Search Tags


/mathhelpforum @mathhelpforum