A linear Transformation associated with matrix

Please Help me to solve these problems:

1. let A= $\displaystyle \begin{pmatrix} 1 & 1 & 2 & 3 \\ 1 & 0 & 1 & -1\\ 1 & 2 & 0 & 0 \end{pmatrix}$ and $\displaystyle B_1$ and $\displaystyle B_2$ are standard basis for $\displaystyle V_4$ and $\displaystyle V_3$. Determine the linear transformation $\displaystyle T:V_4 \to V_3$ respectively such that $\displaystyle A = (T:B_1,B_2)$.

2. let A= $\displaystyle \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ and $\displaystyle B_1 = \{(1,1,1),(1,0,0),(0,1,0)\}$ and $\displaystyle B_2=\{(1,2,3),(1,-1,1),(2,1,1)\}$. Determine the linear transformation $\displaystyle T:V_3 \to V_3$ respectively such that $\displaystyle A = (T:B_1,B_2)$.

3. If $\displaystyle \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ is the matrix of a linear map $\displaystyle T:V_2 \to V_2$ relative to standard basis, then find the matrix $\displaystyle T^{-1}$ relative to the standard basis.